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Summary of the Copenhagen Problem - page 2 

Explanation of symbols and l ist  of columns. 

1. 

2. 

3.  

4. 

5 .  

6.  

7. 
8. 

9. 

Classification according to Str’dmgren’s 1933 paper in the Bull. As t r .  (Z), 
9 ,  87. 

Classification according to Strzmgren’s 1925 paper in  “Epgebnisse der 
exakten Naturwissenschaften, IV, 

- 

Motion relative to the fatating coordinate system 

R = retrograde 
D = direct 

Motion relative to the fixed coordinate .system 

R* = retrograde 
D* = direct 

Motion takes place around . . . 
Motion is periodic (P) o r  asymptotic (A).  

Motion is symmetric (S) o r  asymmetrix (A) with respect to the rotating axes. 

Class of orbits s tar ts  and ends, or reenters (R).  

Principal author 

S = StPbingren 
B = Burrau 
M = M‘o?ler 
T = Thiele 

10. Astronomishe Nachrichten. No. 

11. Copenhagen Obs. Publ. No. 

12. Publication date. 

13. Remarks. 
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Introduct ion t o  Dynamic Programming 

I n  t h i s  s e r i e s  of f i v e  l ec tu re s ,  I would l i k e  t o  
descr ibe some of the  fundamental ideas  of dynamic program- 
ming, and some of  i t s  app l i ca t ions  t o  the  computational 
and ana ly t i c  so lu t ion  of problems i n  the ca lcu lus  of 
va r i a t ions ,  feed back cont ro l ,  t r a j e c t o r y  opt imizat ion,  
and r e l a t e d  problems. Many of these  problems a r i s e  i n  a 
very n a t u r a l  way i n  connection wi th  space t r a v e l .  
would l i k e  f i r s t  t o  t u r n  t o  the  purely mathematical 
aspec ts  of the problem. 
c l a s s i c a l  approach of the ca lcu lus  of va r i a t ions ,  and 
po in t  out  some of i t s  l i m i t a t i o n s .  When we thus have 
motivation f o r  f ind ing  some more e f f i c i e n t  methods i n  
c e r t a i n  cases,  we w i l l  consider  the  approach of the  
methods of dynamic programming. 

I 

Let us begin by d iscuss ing  t h e  

Suppose we s t a r t  w i t h  a simple problem. We wish t o  
minimize the  functional 

over a l l  functions u ( t )  which, say, s t a r t  ou t  w i th  a 
pre-assigned value,  We have t o  f i n d  the  optimal curve. 
This  could be a t r a j e c t o r y  which minlmizes, f o r  example, 
the time required t o  go between two po in t s ,  o r  it might 
be the  t o t a l  amount of f u e l  consumed, o r  some combination 
of the two. 

The problem is  well s e t  and s t ra ight forward .  
C las s i ca l  calculus  of v a r i a t i o n s  says we ob ta in  from the  
f irst  v a r i a t i o n  of t h e  i n t e g r a l  an Euler  equation, 

G 



In t roduct ion  t o  Dynamic Programming 2. 

wi th  assoc ia ted  i n i t i a l  condition u(a)=c and end condi t ion 

which is  a necessary condition f o r  a curve minimizing (1). 
A t  t h i s  po in t ,  most of t h e  c l a s s i c a l  t e x t s ,  i f  n o t  a l l  
the  c l a s s i c a l  t e x t s ,  on the  calculus  of var ia t ions ,  c lose  
up shop and say the  problem is" solved.  A l l  t h a t  remains 
i s  t o  obta in  a numerical so lu t ion .  A s  a matter  of f a c t ,  
most of ten,  they don ' t  even mention t h a t .  

I t 's  r a t h e r  i n t e r e s t i n g  t o  examine the philosophy of 
t h e  coficept of a numerical solut ion.  'zip u n t i l  about the  
e a r l y  19th centruy, t h e  mathematicians t h a t  ex is ted  would 
not  have d is t inguished  themselves very much from what we 
would now c a l l  phys ic i s t s ,  appl ied mathematicians, o r  
astronomers. To show the very c lose  connection t h a t  
ex i s t ed  between the  two subjects ,  it is i n t e r e s t i n g  t o  
note  t h a t  many held pos ts  i n  what a r e  s t i l l  c a l l e d  i n  
our country Departments o f  Mathematics and Astronomy. 
There was no quest ion of  the importance of a numerical 
so lu t ion .  I f  Gauss o r  Newton was i n t e r e s t e d  i n  a problem 
i n  c e l e s t i a l  mechanics, he d i d n ' t  feel  t h a t  wr i t i ng  down 
an equation was a way of ending the  problem. A s  f a r  a s  
they were concerned, t h i s  was a beginning of the  problem. 

Along about the  beginning of the 19th century,  with 
the  g r e a t  i n t e r e s t  in  rigorous foundations of mathematics, 
and r igorous der iva t ions ,  a breed of mathematicians began 
t o  a r i s e  t h a t  was s o l e l y  in t e re s t ed  i n  the  r igorous 
d e t a i l s  and paid no a t t e n t i o n  t o  the  app l i ca t ions .  T h i s  
s p l i t  grew u n t i l  a t  the  present  t i m e  not  only do we have 
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mathematicians who do n o t  work d i r e c t l y  wi th  numbers o r  
w i th  phys ica l  problems, bu t  we have many hundreds of them 
who p r i d e  themselves i n  i t  and a r e  very very proud of the  
f a c t  t h a t  they wouldnst know what a r e s i s t o r  looked l i k e  
i f  they stumbled over it, o r  what a nuc lea r  r e a c t o r  would 
look l i k e  even i f  a red l i g h t  were f l a s h i n g .  

The separa t ion  between sc ience  and mathematics has 
been most unfortunate  and, of course,  i t  has had a most 
unfortunate  inf luence  upon mathematics, because very 
o f t e n  one o f  t he  most i n t e r e s t i n g  p a r t s  of the problem 
i s  the  problem of a c t u a l l y  g e t t i n g  a numerical  s o l u t i o n  
t o  a numerical ques t ion .  T h i s  c e r t a i n l y  was one of the  
d i c t a  of one of the g r e a t e s t  mathematicians of a l l  t i m e ,  
Gauss. 
a numerical s o l u t i o n ,  you had no s o l u t i o n  a t  a l l .  

U n t i l  you had a f e a s i b l e  method f o r  ob ta in ing  

What has changed t h e  p i c t u r e  very g r e a t l y ,  i s  we now 
have d i g i t a l  computers, which can do a r i thme t i c  very 
very f a s t .  
10 d i g i t  number, i n  about a micro-second. 
is  about  s ix- ten ths  of a micro-second---let 's say  a 
1/100,000 of a second---so they can do a hundred thousand 
mul t ip l i ca t ions  of t h a t  type i n  a second. This  means 
t h a t  t h e r e  is a p o s s i b i l i t y  t h a t  one can use methods which 
a r e  q u i t e  d i f f e r e n t  from the  methods you might use i f  
you only had desk computers, o r  s l i d e  r u l e s ,  

They can mul t ip ly  a 10  d i g i t  number by another  
Actual ly  it 

One of t h e  themes of my s e r i e s  o f  l e c t u r e s  w i l l  be 
t o  show t h a t  w i t h  the modern d i g i t a l  computer, 
have f e a s i b l e  methods a v a i l a b l e ,  which were n o t  f e a s i b l e  
before .  J u s t  a s  Poincarg s a i d  t h a t  a proof is  a mat te r  of t h e  

we now 
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fashion of the time, every proof is s u f f i c i e n t  t o  the day thereof ,  
so it is with computational solut ion.  When you t a l k  
about the f e a s i b i l i t y  of a method, t h e r e ' s  no absolute  
connotation. I t ' s  a function of what computational 
devices you have. If we had devices t h a t  could do 
ar i thmetic  10Ptimes f a s t e r  than the devices we have now, 
w e  could use the crudest  type of enumeration t o  solve 
some of the most complex and d i f f i c u l t  problems around. 

It is r a t h e r  i n t e re s t ing  t o  take a p r a c t i c a l  approach 
and f ind  out  what a r e  some of the d i f f i c u l t i e s  t h a t  you 
encounter. The f irst  d i f f i c u l t y ,  you might say, is t h a t  
E u l e r ? s  equation (2)  is  only a necessary condition. Just 
as  in ordinary calculus ,  i f  I want t o  f ind  a minimum of 
a funct ion over a given in t e rva l  when I take the first 
va r i a t ion  and s e t  it equal t o  zero, I might f ind  a number 
of solut ions,  Fig.  1. 

I 
Fig. 1 

How do I t e l l  which one is the absolute  minimum? Calculus 
gives  us no method of doing tha t .  Calculus says t h a t  I 
can g i v e  you necessary conditions f o r  a l o c a l  minimum 
o r  maximum, o r  sometimes of course, a po in t  of i n f l ec t ion ,  
something f a r  more complicated, but  I cannot give you 

9 



In t roduct ion  t o  Dynamic Programming 5. 

you any simple way of f ind ing  the abso lu te  minimum. Now 
f o r  a well-behaved func t ion  of a f i n i t e  number of v a r i a b l e s ,  
you usua l ly  have only a f i n i t e  number of c r i t i c a l  p o i n t s .  
Thus, i n  many cases ,  i t ' s  n o t  too d i f f i c u l t  t o  t e s t  f o r  
the absolute  minimum. 

For a problem i n  the  ca lcu lus  of  v a r i a t i o n s ,  i . e .  i n  
in f in i te -d imens iona l  space,  i t ' s  easy t o  have a denumerable 
number of so lu t ions  s a t i s f y i n g  these  two-point boundary 
value problems. I t h i n k  t h e  e a s i e s t  example of t h a t  is 
t o  take a to rus ,  F ig .  2. 

/-- 

Fig.  2 

Take two poin ts  A and B on t h e  t o r u s  and say  f i n d  t h e  
minimum d i s t ance  between the  two po in t s ,  f i n d  t h e  geodesic 
connecting A and B. Now, t h e r e  i s  one curve (shown 
s o l i d )  connecting t h e  two p o i n t s  which i s  the absolu te  
minimum. Also, provided A and B a r e  s u f f i c i e n t l y  c lose ,  
t h e r e  i s  a family of curves, one of which is shown, which 
winds around once. I can a l s o  f i n d  another  family of 
curves which winds around twice and so  on, I n  each one of 
t hese  f ami l i e s  t h e r e  w i l l  be an abso lu te  minimum f o r  t h a t  
family,  and each one of t hese  minima w i l l  be a r e l a t i v e  
minimum; and the  s o l i d  l i n e ,  the one that does n o t  wind 

1 3  
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around a t  a l l ,  w i l l  be the  absolute minimum. Th i s  is a 
very n ice  way of showing t h a t  i n  a very sens ib le  problem 
you can have a denumerable number of so lu t ions .  

Let us consider the  computational aspects  of the 
c l a s s i c a l  approach. Computationally, w e  face the problem 
of solving i n  general  a nonlinear d i f f e r e n t i a l  equation 
o r  nonl inear  system subjec t  t o  two-point condi t ions.  
Sometimes the two-point conditions come on because of the  
va r i a t iona l  cons t ra in t .  Sometimes they come on very 
n a t u r a l l y  because w e  i n s i s t  t h a t  w e  want t o  f ind  the 
minimum t i m e  f rom one fixed point  t o  another f ixed point .  
I f  we look a t  the  n-merical  problem involved m d  ask what 
can d i g i t a l  computers do i f  we're t a lk ing  about la rge  
systems--+ dimensional, 10 dimensional, o r  20 dimensional--- 
d i g i t a l  computers can do one thing w e l l .  They can perform 
r e p e t i t i v e  operat ions,  which means t h a t  computers can 
solve i n i t i a l  value problems very very e a s i l y .  The i d e a l  
problem f o r  a d i g i t a l  computer is t o  solve ordinary 
d i f f e r e n t i a l  equations subject  t o  i n i t i a l  condi t ions.  
Unfortunately, i n  a calculus of var ia t ions:  w e  have one 
i n i t i a l  condition missing a t  each point .  The standard 
way t o  handle t h a t  is to ,  say, guess an i n i t i a l  der iva-  
t i v e  u l ( a )  and compute out  famil ies  of curves, (Fig. 3), 
u n t i l  we f ind one which f i t s  the end condi t ion a t  b .  

21. 

i 
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We can use an i n t e r p o l a t i o n  method t o  zero  i n  a t  t=b .  
T h i s  i s  the procedure which is  used today with a c e r t a i n  
amount of soph i s t i ca t ion ,  bu t  no t  much more s o p h i s t i c a t i o n .  

There a r e  s e v e r a l  t h ings  which a r e  wrong wi th  t h i s  
approach, I n  the first p lace ,  i f  t h i s  i s  a high-order 
equation,you)Te guessing p o i n t s  i n ,  say, 4-dimensional, 
8-dimensional, or 10-dimensional space.  You might have 
t o  try a very l a r g e  number of these t r a j e c t o r i e s .  
Secondly, many of t hese  v a r i a t i o n a l  problems one can 
show a r e  inhe ren t ly  uns tab le .  T h i s  means, t h a t  a very 
small  change i n  t h e  i n i t i a l  condi t ions  can produce a 
g r e a t  change i n  the te rmina l  condi t ions .  Thirdly,  (2 )  
i s  only a necessary condi t ion ,  
r e l a t i v e  minima and, of course,  s i n c e  the  Euler  equat ion 
i s  j u s t  the equat ion of the  f irst  v a r i a t i o n ,  one has t o  
t e s t  t h a t  one i s  n o t  a l s o  f i n d i n g  r e l a t i v e  maxima o r  more 
complicated saddle  po in t  types of s o l u t i o n s  by t h i s  
t r i a l  and e r r o r  approach. So, t h e  two p o i n t  boundary 
condi t ion  is a very important r e s t r i c t i o n  on the  app l i ca -  
b i l i t y  of the d i g i t a l  computer o r  any o t h e r  type of 
computational technique 

One i s  f i n d i n g  a 

L e t a s  t u r n  t o  more s e r i o u s  r e s t r i c t i o n s  s t i l l .  
Suppose I introduce c o n s t r a i n t s  on the opt imizing 
func t ion  of t h e  form, say,  

d 
i U ' (  4 k .  

This  could be i n t e r p r e t e d  a s  p r o h i b i t i n g  opt imal  curves 
of t he  form 

F ig ,  4 a  

1 L  
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I f  we're ta lk ing  about the  motion of a rocket o r  an 
interceptor ,  o r  a missi le ,  then i t ' s  c l e a r  t h a t  w e  don't 
want t o  consider motions l i k e  t h a t .  We don ' t  concede 
any device t h a t  w e  have can do something l i k e  t h i s .  

Then, of course, you may have cons t ra in ts  on the 
funct ion U i t se l f .  For example, you may say I want the 
a l t i t u d e  t o  be below a cer ta in  value, o r  above a ce r t a in  
value. I may have constraints  of t h i s  type. 

(3) 

Actually, a s  f a r  a s  the most important engineering and 
physical  appl icat ions a r e  concerned, the cons t ra in ts  
a r e  a very i n t e g r a l  p a r t  of the program. Now, i f  one has 
cons t ra in ts  of the form (3)  the s i t u a t i o n  becomes very 
complicated. Le t  's  go back t o  the one-dimensional case.  
Suppose I have a function u ( t )  given over [a,d . 

"u 

I f  I apply calculus ,  I g e t  t h e  turning points ,but  I know 
t h a t  i f  I have cons t ra in ts  I have t o  t e s t  the  end points .  
Of course, t h i s  i s  de l ibera te ly  drawn so t h a t  i n  t h i s  
case the  end poin ts  a r e  the absolute  minimum and the 
absolute  maximum. Now what does t h i s  mean i n  the calculus  
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of v a r i a t i o n s ?  It means t h i s .  Suppose I draw u a s  a 
func t ion  of t o  

% 

"t 

What can happen (and i t ' s  easy t o  cons t ruc t  very simple 
examples i n  which t h i s  does happen) i s  t h a t  t h e  s o l u t i o n  
is constructed i n  t h e  fol lowing way: S t a r t i n g  from t=O, 

you fol low an Euler  t r a j e c t o r y  u n t i l  you h i t  a boundary. 
Then you go along t h e  boundary for awhile; then you fol low 
an Euler  t r a j e c t o r y  u n t i l  you h i t  another  boundary, and so  
on. You can s e e  what t h e  computational d i f f i c u l t i e s  a r e .  
The p o i n t s  A ,  €3, C, D, . e  ., where one h i t s  t h e  boundary a r e  
unknown. As a ma t t e r  of f a c t ,  there is no simple way of 
determining how many d i f f e r e n t  p i eces  t h e  s o l u t i o n  w i l l  
have, 
c o n s t r a i n t s  and determining, f o r  example, whether it w i l l  
h i t  the  boundary a t  a l l !  I f  it h i t s  t he  boundary, does 
i t  s t a y  on the boundary a l l  t he  way o r  come o f f ,  and s o  
f o r t h ?  So if we take  t h e  computational d i f f i c u l t i e s  t h a t  
we had before,  without c o n s t r a i n t s ,  and add c o n s t r a i n t s ,  
you see  t h a t  you have a very formidable problem. 

There i s  no simple way of looking a t  a problem wi th  

There a r e  c l a s s i c a l  techniques i n  the ca l cu lus  of 
v a r i a t i o n s  f o r  handling c o n s t r a i n t s .  What t hese  do i s  
in t roduce  a d d i t i o n a l  func t ions  s a t i s f y i n g  a d d i t i o n a l  two- 
p o i n t  boundary cond i t ions .  I n  some cases ,  i f  t he  c o n s t r a i n t s  

1 4  
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a r e  simple enough, one can apply c l a s s i c a l  techniques. 
A n ice  example of an important cons t ra in t  is where one 
wants the deri-vative t o  be - +l. For example, i n  the  op t i -  
mization of rockets ,  i f  you're ta lk ing  about when you go 
f u l l  speed and when not---since t h e r e ' s  so l i t t l e  cont ro l  
over the rocket engine---essentially a l l  you can say is  
make the  r a t e  a t  which you burn f u e l  e i t h e r  +1 o r  0; 
e i t h e r  burn a t  maximum r a t e  o r  do not  burn a t  a l l .  
O f  course, t h a t ' s  a f a i r l y  simple example, because, i n  
t h a t  case, one can show t h a t  t he re  a r e  two regions o r  
t h ree  regions f o r  which you have t o  pick a poin t  a t  which 
you want t o  go a t  maximum ra te ,  and s o  fo r th .  But when I 
kalk about control  problems, I'll come back t o  t h i s  again.  

T h i s  type of control ,  where the re  a r e  only two values 
has the picturesque name, "Bang-Bang Control". I t 's  very 
important from t h e  engineering point  of view, because i t  Is 
c l e a r  t h a t  i t ' s  much e a s i e r  t o  have a device which is 
e i t h e r  on o r  o f f  than something which has t o  measure cer-  
t a i n  s t a t e  var iab les  and adjust  i t s e l f  t o  those var iab les .  
So th i s  is a highly desirable  type of control ,  which is 
why i t  I s  become of  importance. 

Now, suppose I introduce uncer ta in t ies ,  first in the 
form of s tochas t ic  elements. Then I can make the  problem 
even more complicated and add adapt ive elements. As an 
example, suppose we're t rying t o  f l y  through an atmosphere 
which has c e r t a i n  unknown propert ies ,  and w e  have both 
t o  d i r e c t  our course and determine something of t he  pro- 
p e r t i e s  of the atmosphere a t  the  same t i m e .  That would be 
an adaptive, o r  learning,  process. 1'11 t a l k  about these 
i n  more d e t a i l .  
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LetOs j u s t  assume there a r e  c e r t a i n  unknown f e a t u r e s  
present---winds, small  dev ia t ions  of t he  atmosphere, 
small  devia t ions  i n  the way i n  which t h e  engine runs, 
smal l  e r r o r s  i n  d i r e c t i o n  and, i n  o rde r  t o  get  around 
t h e  f a c t  ' t h a t  w e  r e a l l y  d o n * t  know about t h e s e  th ings ,  
we assume t h a t  t h e y B r e  random v a r i a b l e s ,  T h i s  i s  always 
an assumption, and what we*d l i k e  t o  do i s  r ep lace  these  
s t o c h a s t i c  elements by adapt ive  elements.  We hope t h a t  
we can l e a r n  more about t h e  unknown elements a s  we go 
along 

Now, of course,  i f  we cons ider  t h e s e  more modern f e a -  
t u r e s ,  then the c l a s s i c a l  techniques a r e  very d i f f i c u l t .  
T h i s  i s  some of the motivation f o r  a reexamination of 
v a r i a t i o n a l  problems t o  see  i f  we cannot t a c k l e  them by 
d i f f e r e n t  methods which provide,  i n  some cases ,  a b e t t e r  
a n a l y t i c  formulation and/or a be t t e r  computational approach. 
But I want t o  mention r i g h t  now t h a t  i n  no way does a 
new approach supercede t h e  a p p l i c a t i o n  of an o l d  approach. 
Generally speaking, i t ' s  very hard i n  mathematics t o  f i n d  
any s i t u a t i o n  where one method completely r ep laces  another .  
To a g r e a t  ex ten t ,  a s  new methods occur  they  complement 
the  o l d e r  methods, and i t s s  the combination of the  two 
toge the r  t h a t  i s  t h e  most powerful, What w e s l l  f i n d  is  
t h a t  i n  dynamic programming wesre cons t ruc t ing  a theory  
which is  dual  t o  the u l a s s i c a l  theory---dual i n  the 
c l a s s i c a l  geometric s ense ,  Isll p o i n t  t h i s  ou t  aga in  l a t e r ,  
T h i s  makes i t  very c l e a r  t h a t  the two t h e o r i e s  taken to -  
g e t h e r  w i l l  be very much more powerful than e i t h e r  one 
by i t s e l f .  

Before d iscuss ing  v a r i a t i o n a l  problems, l e t  us take  
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a very simple problem i n  calculus i n  order  t o  i l l u s t r a t e  
t h e  approach we're going t o  use. 
schoolboy calculus  problem: A stone is thrown s t r a i g h t  up 
w i t h  ve loc i ty  V. What is the maximum height  it a t t a i n s ?  
We know how t o  solve the problem i n  terms of calculus .  We 
say l e t  x ( t )  represent  the  a l t i t u d e  of the s tone a t  time 
t. We a r e  assuming implici t ly ,  of course, t h a t  once the 
s tone is thrown up, i t ' s  acted upon only by gravi ty ,  
which means t h a t  the  accelerat ion is -g, di rec ted  down- 
wards. The i n i t i a l  condition is  t h a t  a t  t i m e  zero the  
a l t i t u d e  was zero, and w e  s a i d  the i n i t i a l  ve loc i ty  was 
V; so we're a s  happy a s  could be, because we have a second 
order  d i f f e r e n t i a l  equation, x"=-g wi th  t w c  i n i t i a l  values, 
x(O)= 0 and xl(0)=V, which we can, i f  we i n s i s t  upon it, 
solve computationally, and just  t r a c e  out  t r a j e c t o r i e s .  
I n  t h i s  case, of course, we can a c t u a l l y  ca r ry  o u t  the 
so lu t ion  t o  obtain 

Suppose I take the  

2 (4)  x'=V+gt, x=Vt+gt /2. 

The t r a j e c t o r y  over time i s  

I \ .  

i 
I 

I 
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which, w e  f ind ,  has a maximum value.  To f ind  the maximum 
value I d i f f e r e n t i a t e  x ( t )  w i th  respec t  t o  time and 
f ind  where x'=O. Thus t h e  time a t  which maximum a l t i t u d e  

. 
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i s  obtained i s  V/g. I s u b s t i t u t e  t h i s  i n t o  t h e  t r a j e c t o r y  
equat ion (4), and we see  t h a t  

We say, well, what more can w e  want? I can make the  
problem more complicated by assuming t h a t  we're going 
through an inhomogeneous atmosphere, so  t h a t  i n  a d d i t i o n  
t o  the inf luence of g rav i ty ,  we have a r e t a r d i n g  fo rce  
due t o  t h e  v e l o c i t y .  I f  I make t h i s  a func t ion  of x 
and x 1  which is s u f f i c i e n t l y  complicated, I cannot so lve  
i t  e x p l i c i t l y .  But, we say we d o n ' t  c a r e .  Give us any 
func t ion  g(x ,x ' ) ,  s o  t h a t  t he  d i f f e r e n t i a l  equat ion i s  

I have t h e  i n i t i a l  condi t ions .  I can run ou t  the t r a j e c t o r y ,  
f i n d  ou t  where the  maximum time occurs ,  and get  the 
s o l u t i o n  to  the problem. 

What's wrong wi th  t h a t ?  F i r s t ,  perhaps it i s n ' t  
f a i r  t o  ask whatOs wrong w i t h  it; bu t  l e t * s  ask,  what it 
i s  we d o n * t  l i k e  about it. One t h i n g  we d o n j t  l i k e  i s  
t h a t  t h i s  s o l u t i o n  g ives  us too  much information.  Remember, 
1 j u s t  asked f o r  one b i t  of information, i .e . ,  what is  
the maximum a l t i t u d e ?  I g m  n o t  i n t e r e s t e d  i n  the whole 
t r a j e c t o r y ,  simply the maximum t r a j e c t o r y .  Furthermore, 
I would l ike  t o  know what is t h e  maximum t r a j e c t o r y  a s  
a func t ion  of t he  i n i t i a l  v e l o c i t y .  I n  order ,  t he re fo re ,  
t o  so lve  t h a t  problem, f o r  every i n i t i a l  value V, you would 
have t o  run out  a t r a j e c t o r y ,  assuming t h a t  y o u D r e  i n  

. 
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the  general  case where you cannot solve e x p l i c i t l y ,  
and from each one of these runs, ex t r ac t  one point ,  the  
maximum a l t i t u d e .  Then you would turn out  wi th  a cwve .  

Fig. 7 

But each point  would require  the  ca lcu la t ion  of one 
complete t r a j ec to ry .  
of doing it. 

T h i s  i s  a r a t h e r  i n e f f i c i e n t  way 

Is there any way i n  which w e  can get an equation 
a s  a funct ion of t h e  ve loc i ty  d i r e c t l y ?  Can 

Or Xmax 
we use another approach? 
and t h i s  is the approach tha t  we a r e  going t o  r e f i n e  t o  
t h e  dynamic programming approach when we introduce 
maximization. 

We f ind  there is  another approach, 

Let's s t a r t  a l l  over again and f ind  the maximum 
height .  We wri te  down the following obvious statement:  

The maximum height  depends on the i n i t i a l  veloci ty .  

Surely w e  a l l  agree about t h a t .  
mathematical t r a n s l a t i o n  of "is a funct ion of", so I 
wr i te  

It ''depends on" i s  a 

Maximum height  = f ( V ) .  
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I want t o  obtain an equat ion f o r  t h i s  maximum height. 
I observe the following: 
I s t a r t  t h e ' s t o n e  a t  a l t i t u d e  0. 

Fig.  8 

A t  t h e , e n d  of the time i t  has achieved a c e r t a i n  
a l t i t u d e ,  point  A .  Take a t o  be an i n f i n i t e s i m a l ,  
which means t h a t  the a l t i t u d e  i t  has obtained i s  V a 
if  i t ' s  thrown up, Now, I s e e  t h a t  whatever t h e  maximum 
height  s t a r t i n g  from 0 was, it w i l l  be the  a l t i t u d e  
V , plus  t h e  maximum height obtained s t a r t i n g  from A 
w i th  a new i n i t i a l  v e l o c i t y .  Therefore:  

, 

The maximum height s t a r t i n g  a t  ground zero wi th  
ve loc i ty  V i s  equal  t o  the he igh t  a t t a i n e d  i n  time 
A, plus the maximum subsequent he igh t .  

L e t ' s  t r a n s l a t e  t h i s  i n t o  a lgebra .  WeOve assumed t h a t  the 
atmosphere is  homogeneous,so we now have a new problem 
which we s t a r t  from p o i n t  A with a new v e l o c i t y .  What 
i s  t h e  new v e l o c i t y ?  We've l o s t  g A 
of  g r a v i t a t i o n ;  according t o  our  d e f i n i t i o n  of t h e  func t ion  f ,  

due t o  t h e  p u l l  

2 0  
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f is the maximum height when we s t a r t  with the  ve loc i ty  
V-g 
O u r  equation is 

and t h i s  is  a l l  O( n2), where is  an inf in i tes imal .  

f(V) = v n  + f ( V - g A )  + o ( A 2 ) .  

Equation (8) says t h a t  i f  I look a t  the process, a f t e r  
a ce r t a in  t imen has elapsed, I have exact ly  the same 
type of process, except I ' ve  s t a r t e d  with a new ve loc i ty  
because I ' m  assuming, i n  t h i s  simple model, a homogeneous 

approach zero. We're l e f t  with 

atmosphere. Le t ' s  expand i n  powers of and l e t  n 

( 9 )  f ' (V) = g , f(0) = 0. 

The i n i t i a l  condition a r i s e s  because i f  the ve loc i ty  is 
zero the maximum a l t i t u d e  is zero.  The so lu t ion  is 

-2 
the desired r e s u l t .  V- f ( V )  = - a3 (10) 

The n ice  thing about t h i s  approach is  t h a t  we've 
found out  only the information t h a t  was des i red .  We don ' t  
answer such problems a s  where the s tone was a t  t h e  end of 
two o r  th ree  seconds. The question was: what is  the 
maximum height  given the  i n i t i a l  veloci ty? T h i s  is what 
we answer. I make an issue about t h i s  because I 'want  t o  
emphasize t h a t  i f  you understand t h i s  problem, ' you 
understand everything t h a t  follows, f o r  t h i s  has everything 
i n  it. It has the whole idea t h a t  we're going t o  use. 
The only thing t h a t ' s  going t o  be more complicated is t h a t  
we're no t  going t o  allow the s tone t o  follow i t ' s  own 
des i res ,  o r  the p u l l  of  gravi ty ,  but  we'Te going t o  
determine what the veloci ty  is going t o  be, as  we go along. 
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So we*re going t o  add some minimization and maximization. 
But t h e  basic  idea of looking a t  t h e  problem i n  t h i s  

way, t r a n s l a t i n g  an obvious ve rba l  s ta tement  i n t o  an 
equation, is a l l  t h a t  weOre going t o  use,  no more, no 
l e s s  s o p h i s t i c a t i o n  ., 

L e t  us now consider  a s l i g h t l y  more d i f f i c u l t  
problem : 

A stone is  thrown s t r a i g h t  up wi th  v e l o c i t y  V 
i n t o  an inhomogeneous atmosphere wi th  a i r  r e s i s -  
tance dependent on a l t i t u d e  and v e l o c i t y .  
t h e  maximum a l t i t u d e  i t  a t t a i n s ?  

What i s  

We a r e  a t  ground eeao,but a s  we go up t o  var ious a l t i t u d e s ,  
we f i n d  t h a t  t h e r e  a r e  s t r a t a .  
d e n s i t i e s ,  for example, so t h a t  we have a r e s i s t a n c e  
which depehds upon t h e  a l t i t u d e  and, o f  course,  upon the  
v e l o c i t y .  
I have the  equat ion 

The s t r a t a  have d i f f e r e n t  

Now t h e  c l a s s i c a l  approach i s  s t r a igh t fo rward .  

2 = g(x,;;), w i t h  x ( 0 )  = o  and ~ ' ( 0 )  = V . 

A s  g is  a func t ion  which does n o t  y i e l d  t o  an e x p l i c i t  
s o l u t i o n ,  a l l  I do is  run out  t he  t r a j e c t o r i e s  on t h e  
computer, and t o  each value of V, I g e t  an xmax 

i s  the  method t h a t  is  used a t  the  p r e s e n t  t ime. We can 
do something which is a l i t t l e  be t te r .  Can we f i n d  the 
func t ion  of V d i r e c t l y ?  
case  because of  the inhomogeneity; so  we have t o  extend 
the problem a l i t t l e  b i t .  

gene ra l  problem: 

. T h i s  

We c a n ' t  do it  e a s i l y  i n  t h i s  

L e t ' s  t ake  the  fol lowing more 

22 
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Suppose I s t a r t  an a l t i t u d e  h, and I throw the  s tone 
s t r a i g h t  up. Then what is the maximum dis tance 
a t t a ined  above groupd? 

T h i s  is  the  problem which we ' l l  study. The maximum 
dis tance  above ground depends c l e a r l y  upon the i n i t i a l  
d i s tance  h, and upon the veloci ty  V. Le t  

H(h ,V)  = f ( h , V ) ,  + h = maximum dis tance above ground 
s t a r t i n g  a t  a l t i t u d e  h w i t h  
Velocity V, where f ( h , V )  is 
the maximum addi t iona l  dis tance 
gained, which a l s o  depends upon 
h and V. 

Now, what equation do we ge t?  J u s t  a s  before , I  say 

I s t a r t e d  a t  h, I go up another dis tance V . Now, 
I ' m  i n  exact ly  the same s i tua t ion ,  except my new dis tance 
above ground is h + V A, and my new ve loc i ty  i s  V - g ( h , V ) .  
My assumption was t h a t  i n  XI', the  acce lera t ion  was a 
c e r t a i n  funct ion of pos i t ion  and veloci ty .  T h i s  i s  

l e t  the process operate i n  in f in i tes imal  time A .  

n - g ( h , V ) .  The equation i s  

H ( h , V )  = h+Vd A + f(h+V=A, V-A*g(h,V) ) 

Now i f  w e  l e t  napproach  zero,  we g e t  t o  a p a r t i a l  d i f f e r -  
e n t i a l  equation, 

+ O( A2). [ I (12) 

where the  i n i t i a l  condition arises a s  before.  

Now i f  we wanted t o  pursue t h i s  ana ly t i ca l ly ,  w e  could 

2 3  
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use the theory of c h a r a c t e r i s t i c s ,  If we wanted t o  pursue 
i t  computationally, then we could so lve  t h i s  a s  a f i rs t  
order  p a r k i a l  d i f f e r e n t i a l  equat ion ,  
t he  recurrence r e l a t i o n  (12) i t s e l f .  

05 w e  can use 

T h i s  problem a l s o  r egu i ses  a computational so lu t ion ,  
and you might wonder what you have gained over t h e  
o r i g i n a l  computational s o l u t i o n ,  The answer is  t h a t  i f  
you so lve  t h i s  computationally,  every number t h a t  you 
g r ind  out  i s  meaningful, because every one of these 
func t ions  is an i n t e r e s t i n g  f m c t i o n  t o  t h e  engineer  o r  
t h e  aerodynamfcisd who I s  doing t h e  problem, He wants 
t o  know how much f a r the r  you go i f  youl re  a t  a c e r t a i n  
a l t i t u d e  and a c e r t a i n  v e l o c i t y .  Whereas, i f  one uses 
the conventional approach, he has t o  compute a l l  t he  
t r a j e c t o r i e s  and p i ck  o u t  j u s t  one of them. So t h i s  

func t ion  gives us t h e  information we want i n  terms of 
the va r i ab le s  which descr ibe  t h e  s o l u t i o n ,  

Let us now apply t h i s  teckrlfque t o  t h e  ca l cu lus  of 
v a r i a t i o n s .  Before applying it t o  a genera l  problem, 
Let m e  apply f t  t o  a very simple problem, a problem 
of geodesfcs,  Suppose, a b s t r a c t l y ,  I have a p o i n t  p 
i n  phase space, and 1 want t o  go t o  anclther po in t  r i n  
phase apace. I n  o the r  words, for a three-dimensional 
t r a j e c t o r y  problem 

f 

I Fig0 9 

24 
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t h i s  would be a s  follows: s t a r t i n g  a t  a c e r t a i n  point  w i t h  
c e r t a i n  i n i t i a l  ve loc i t i e s ,  what Is the  minimum time required 
t o  g e t  t o  another point  w i t h  o ther  v e l o c i t i e s ?  For t h i s ,  

p may be two-dimens iona 1, f our-dimens ional ,  s i x  -dimens iona 1, 
o r  may have higher dimensionality, depending upon the 
problem. When we say, p is a point  i n  phase space, w e  
mean p is e s s e n t i a l l y  a f i n i t e  dimensional vector  whose 
components descr ibe the s t a t e  of the  system. If i t ' s  
a conventional problem i n  mechanics, then p ' h a s  a s  components 
the  pos i t ion  and veloci ty  values. We want a path of 
minimum time. What can we say about a path of minimum 
time? Using the same idea tha t  w e  d i d  before, we say, 
suppose we continue along the path t o  some point  q. 
We don ' t  know a t  t he  moment what q w e  went to ,  but  we can 
say t h a t  the  remainder of the path must a l s o  be a geodesic. 
If pqr was a geodesic, say a path of minimal time, then, 
i f  we take intermediate point q, the  path qr must be a 
path of minimum t i m e .  T h i s  is  j u s t  t he  idea we were using 
before .  We were saying t h a t  i f  we a r e  throwing a s tone 
s t r a i g h t  up and a re  looking f o r  the maximum dis tance 
above the ground, a f t e r  we've gone a ce r t a in  way along, 
we f ind exact ly  the  same type of problem ahead of us. 
That ' s  what we're saying here. The o r i g i n a l  problem 
was t o  f ind  a minimum time from p t o  r, then a t  po in t  
q the  problem must s t i l l  be t o  f ind  a minimum time from 
q t o  r. Subsequently, we'll descr ibe why it i s n ' t  
always t r u e  t h a t  the t i m e  from p t o  q is minimal. 
You might th ink  t h a t .  I t ' s  t r u e  f o r  some geodesics, bu t  
not  f o r  others .  

I 

As before,  introduce a funct ion.  
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f ( p )  = minimum time t o  go from p t o  r, which 
depends upon where w e  s t a r t .  

Itss a l s o  a func t ion  of t he  te rmina l  po in t ,  bu t  f o r  t h i s  
d i scuss ion  l e t D s  keep the  termfnal  p o i n t  f i x e d .  Then 
f ( p )  w i l l  be the  time requi red  t o  go from p t o  q, whatever 
t h a t  t i m e  is i n  our  co-ordinate system, p lus  t h e  minimum 
time required t o  go from q t o  r, 
weCve defined f o r  a l l  po in t s  p .  

This  is a func t ion  which 

How should q be chosen? I say q should be chosen t o  
minimize 

L 

Now t h e r e ' s  one f u r t h e r  idea added, If we have a choice 
of s e v e r a l  qss ,  

n 

Space 

Fig. 10 

how do we choose the appropr ia te  q? We have t o  balance 
two f a c t o r s .  We have t o  balance the  time t o  g e t  t o  q1 
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plus the  minimum time t o  go from q1 t o  r. 
p a r t  is analogous t o  what we d i d  before.  T h i s  is now 
a new idea.  But i t ' s  again an obvious common sense 
point  of view. 

So t h i s  

Equation (14), a s  it turns  out,  contains  most of 
one-dimensional c l a s s i c a l  calculus of var ia t ions .  1'11 
give you some references t o  t h i s  subsequently. T h i s  
common sense, r a t h e r  simple approach w i l l  contain the 
c l a s s i c a l  Euler  condition and o ther  condi t ions.  However, 
we're in te res ted  i n  an approach which leads t o  a f e a s i b l e  
computational method. 

Let  me give you a very simple i l l u s t r a t i o n  of t h i s ,  
which is qu i t e  per t inent  t o  general  t r a j e c t o r y  problems. 
The problem ac tua l ly  arose in  the following way: A 
f r i end  of mine was t rave l ing  across  the country i n  a 
plane, and he got  i n t o  a s t o r m .  
course (he announced tha t  he was devia t ing) ;  and afterwards 
my f r i end  asked the p i l o t ,  "What r u l e  do you choose t o  
deviate?"  The p i l o t  repl ied,  "Well, I have t o  f l y  within 
a c e r t a i n  dis tance of cer ta in  a i r  f i e l d s .  Since my 
f r i end  was a mathematician, he immediately conjured up 
the following problem: H e  said,  "Suppose we have a s e t  
of points  on the map---cities, a i r  fields--- which 
a r e  numbered i n  some way 

The p i l o t  deviated from 

11 

Fig.  11 

i ,  ' - 
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I g ive  you a matr ix  T = ( t *  ' ) ,  1 9  wi th  terminal  po in t  N .  
where t '  i s  the  t i m e  requi red  t o  g e t  from t h e  i - t h  p o i n t  
t o  t h e  j - t h  p o i n t ,  
connected, which, of course,  i n  general ,  w i l l  n o t  be t r u e .  
All t h a t  means i s  t h a t  t = 00 i f  t h e r e ! s  no t r a j e c t o r y  
between i and j. Computationally, you s e t  it equal  t o  
a very la rge  number, which e f f e c t i v e l y  r u l e s  o u t  t h e  use 
of it a s  a path.  
t o  the terminal  p o i n t  N .  

u 
I assume t h a t  any two p o i n t s  a r e  

f j  

I want t o  go from the  i n i t i a l  p o i n t  1 

I can go i n  t h e  fol lowing ways: I can go d i r e c t l y ,  
o r  I can s t o p  once and then go, o r  I can s t o p  th ree  t imes,  
f o u r  times, e t c .  T h i s  i s  a p r a c t i c a l  problem a s  f a r  a s  
t he  rout ing  o f  t r a f f i c e  is  concerned, because, i f  t h i s  

i s  time, time i s  n o t  d i r e c t l y  p ropor t iona l  t o  d i s t ance ,  
a s  we know i n  going through t r a f f i c ;  and very o f t e n  we're 
w i l l i n g  t o  go s e v e r a l  blocks o r  s e v e r a l  miles  ou t  of our  
way, so  a s  t o  minimize the  time requi red  t o  g e t  from one 
p o i n t  t o  another.  So i f  you were going from one p o i n t  
t o  another  i n  a c i t y  which you assume was l a i d  ou t  i n  
a rec tangular  g r id ,  an appropr ia te  problem would be: 
Which s t r e e t s  do you fol low a t  var ious  times of t h e  day 
i n  order  t o  minimize the time t o  g e t  from one p o i n t  
t o  t h e  o the r?  

T h i s  looks l i k e  a very combinator ia l  problem, It 
doesn l t  look l i ke  t h e  kind of problem t h a t  one can handle 
by ca lcu lus  o r  the  ca l cu lus  of v a r i a t i o n s ,  bu t  it lends 
i t s e l f '  very n i c e l y  t o  the  foregoing approach. 
t h i n g  I do i s  cons ider  the  gene ra l  problem, n o t  O f  g e t t i n g  
from t h e  f ixed p o i n t  1 t o  t h e  f ixed  p o i n t  N, b u t  of g e t t i n g  

The f i rs t  

b 

23 
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from an a r b i t r a r y  poin t  t o  the  terminal  po in t  N .  
I can def ine  a func t ion  

fi  = the minimum time required t o  go from 
i t o  N, i = 1, 2, . . N ; 

t h a t  I defined before .  I drew 
(P 1 f i  is exac t ly  the f 

t he  geodesic, Fig.  lo., a s  if i t  were a n i c e  continuous 
curve, but ,  of course, I d i d n ' t  def ine  what my phase 
space was. T h i s  i s  a p a r t i c u l a r  r e a l i z a t i o n  of the  
problem I was t a lk ing  about before .  And 1'11 expla in  
s h o r t l y  the  relevance t o  ac tua l  problems in t r a j e c t o r y  
opt imizat ion.  I f  we're a t  i, what a r e  we going t o  do? 
Clear ly ,  w e  must go t o  some o the r  po in t  j ,  s o  w e  use up 

Then, s t a r t i n g  from j ,  w e  go t o  N, and now the time t 
w e  want t o  minimize 

i j  

where w e  pu t  j#i becapse we insist t h a t  w e  go someplace. 
Also 

f N  = 0 

which is a condi t ion which gives  us t h e  unique so lu t ion .  
I t s s  c l e a r  you can add a constant t o  both sides of the 
equation a s  it stands;  but ,  if w e  add t h i s  condi t ion,  the 
time requi red  t o  get f r o m  N t o  N, or zero, then i t ' s  
not  d i f f i c u l t  t o  show we have a unique so lu t ion .  

Computationally, how would w e  go about g e t t i n g  i t? 
We have the  unknown value on both sides o f  the 
equation, so we approximate in seve ra l  ways. One way 
t o  approximate is  what one might c a l l  po l i cy  space.  

23 
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What p o l i c i e s  could you have? The s imples t  p o l i c y  would 
be always go d i r e c t l y  t o  N o  I f  you always go d i r e c t l y ,  

whatus a s l i g h t  improvement on t h a t  po l i cy?  It would be 
t o  s t o p  a t  one p lace  i n  between. If you stopped a t  one 
p l ace  i n  between, and then went d i r e c t l y ,  what you 
would want t o  do is minimize oveF the p o i n t  a t  which you 
s t a r t S  and hence, 

the time requi red  t o  go from i t o  N .  But 0 
f i  = tiN, 

I f  you cont inue i n  t h i s  way, i t D s  first of a l l  c l e a r  
t h a t  your sequence i s  decreasing,  and furthermore,  you 
can show t h a t  it te rmina tes  a t  t he  end of a f i n i t e  
number of steps. So we have a very simple way of so lv ing  
t h i s  problem, Subsequently, when I d i scuss  t h e  use of 
t h e  d i g i t a l  computer, 1'11 d i scuss  t h e  f e a s i b i l i t y  of 
i t ,  It follows t h a t  i f  you have, say,  a hundred po in t s ,  
t h i s  i s  t h e  type of c a l c u l a t i o n  t h a t  one could do by 
hand i n  the space of a few hours.  
people who have had no mathematics a t  a l l ,  merely ask ing  
them t o  perform these  very simple operations---adding, 
t ak ing  a minimum---it t akes  j u s t  a few hours t o  so lve  
very b i g  networks. 

We t r i e d  i t  ou t  on 

The relevance t o  a c t u a l  t r a j e c t o r y  problems can be 
shown by means of a one-dimensional problem. 
a t  x ( o >  = c 

I s t a r t  
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X 

C 

- 

Fig. 12 

t 
I 

and I want t o  end a t  x ( l ) =  X .  

the  problem i n  t h e  following way. Let's j u s t  draw a 
v e r t i c a l  series of l i n e s  i n  10.11 and assume t h a t  i n  some 
way or another  you can only be a t  a c e r t a i n  s e t  of  
p o i n t s  on these  l ines .  Assume t h a t  these p o i n t s  were 
a i l  c l o s e  enough toge ther ,  so I know how t o  get t o  
nearby ones. In s t ead  of allowing an a r b i t r a r y  s tep,  
assume t h a t  once w e  a r e  on a given p o i n t  on a given 
l i n e  w e  can only go t o  one of the nearby p o i n t s  i n  
phase space.  Then, by d i s c r e t i z i n g  the 'problem i n  t h i s  
way, we're back t o  t h i s  type of problem considered 
ea r l i e r ,wh ich  w e  know how t o  so lve .  So the f a c t  t h a t  
t h i s  problem can be solved f o r  very l a r g e  numbers of 
p o i n t s ,  a s  I w i l l  d i s c u s s  l a t e r - - - seve ra l  thousand, 
f i v e ,  t e n  thousand points---means t h a t  we have a very 
quick  way of approximating t o  the s o l u t i o n  of  q u i t e  
complicated t r a j e c t o r y  problems. I haven ' t  e s t a b l i s h e d  
the f e a s i b i l i t y ,  because I haven ' t  d i scussed  e x a c t l y  how 
l a r g e  N can be o r  what the time r equ i r ed  is .  

What we can do is approximate 
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Theress  one o t h e r  p o i n t  I wanted t o  mention. I have 
s a i d  t h a t  I would show why t h e  i n i t i a l  p a r t  pq of the 
optimal curve i n  phase space was n o t  a geodesic .  I 
sa id ,  suppose we want t o  go from p o i n t  p t o  p o i n t  r i n  
phase space. 
I t ' s  n o t  a t  a l l  c l e a r  t h a t  segment pq must be a geodesic,  
and, i n  general ,  i t P s  n o t  t r u e .  

I t ' s  c l e a r  t h a t  segment q r  must be a geodesic .  

When is it obviously t r u e ?  I t ' s  obviously t r u e  f o r  
the following simple case :  Suppose I t ake  a c e r t a i n  
p o i n t  a , b  in  the xy plane,  

1 

Fig .  13 

and I want t o  go t o  another  p o i n t  (a2,  b2) i n  minimum 
time, I t f s  c l e a r  t h a t  both p a r t s  of t h e  curve a ,  al, 

a r e  geodesics,  i f  t he  curve i t s e l f  is  a geodesic.  a2 
The proof is by con t rad ic t ion .  
a geodesic, I would use a minimum time pa th  over  al, a2.  

I f  p a r t  a ,  a l  were n o t  

I 
I 
I 
1 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
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Suppose t h a t ,  not  only do I want t o  g e t  t o  point  
(a2,b2) i n  minimum time, but  I want t o  a r r i v e  there  a t  
a c e r t a i n  angle.  I n  o ther  words, I want a path which 
comes i n  a t  a ce r t a in  angle .  T h i s  is  now my d e f i n i t i o n  
of a geodesic. 
coordinates but  a l s o  veloci ty  o r  angle coordinates.  Then 
i t 's  c l e a r  t h a t  any terminal p a r t  of t he  curve must be 
a curve which comes i n t o  t h i s  po in t  a t  t h i s  angle. But 
any former p a r t  of the curve is  not  a geodesic i n  t h i s  
sense.  So the  recurrence re la t ion ,  the funct ional  equation 
t h a t  we use, works i n  the  x-increasing d i r ec t ion  i f  w e  
take t h e  end. But it holds only f o r  subsequent t imes.  We 
cannot mak2 any statement i n  general  about t h i s .  

Phase space is now not  only i n  the pos i t ion  

T h i s  is  qu i t e  d i f f e r e n t  from what holds i n  the  c l a s s i c a l  
calculus  of var ia t ions .  I n  the c l a s s i c a l  calculus  of 
var ia t ions  when we have an optimal t r a j e c t o m  what we 
know i s  t h a t  any p a r t  of t h i s  t r a j e c t o r y  is a so lu t ion  
of the Euler  Equation. T h i s  information, which is qu i t e  
useful ,  is a l so  qu i t e  dangerous, because w e  know the  
Euler  Equation can have many so lu t ions .  If it had a unique 
so lu t ion  t h i s  would be very useful .  If it had a multi-  
p l i c i t y  of so lu t ions  it doesn' t  g ive us the whole we 
want. When w e  remove the mul t ip l i c i ty  of solut iong a s  
we have here,we a r e  saying from here Om, t h a t  t h e  so lu t ion  
w i l l  be not  only a necessary condition, but  w i l l  be I 

character ized uniquely by the condi t ion t h a t  it is an 
absolute  minimum. We w i l l  discuss these things i n  more 
d e t a i l .  I ' d  l i k e  t o  poin t  out t h a t  we automatical ly  g e t  
r i d  of the problem of determining what the  absolute  
minimum is once we9ve determined various r e l a t i v e  minima. 

3 3  \ *  
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Calculus of Variat ions -- Computational Aspects 

I n  considering the  minimization of a funct ional  by 
means of the c l a s s i c a l  theory of calculus  of var ia t ions  

w e  f ace  the problem of solving a problem given i n  terms 
of  the  Euler equation and associated end o r  na tura l  boundary 
condition. The minimizing a rc ,  of course, i s  from a c l a s s  
of  a r c s  which s a t i s f y  the i n i t i a l  condition 

The i n i t i a l  point  i s  f ixed.  The d i f f i c u l t i e s  of t h i s  
approach have been pointed out  e a r l i e r .  It i s  c l e a r  that 
the  minimum value of the funct ional  depends on the i n i t i a l  
point  a, as well  as the i n i t i a l  value of the mini-ing 
funct ion c. We t r a n s l a t e  t h i s  mathematically, as before,  
by introducing the funct ion 

b 

u(a)=c  a 
f ( a ,  c )  = Min 1 g(u,  u t ,  t )  d t .  ( 3 )  

Let the curve, Fig. 1, represent  the minimizing a r c .  

Fig.  1 

3G 

b 

I 
4 
I 
I 
I 
M 
i 
I 
I 
l 
1 
I 
I 
I 
I 
1 
I 
I 
I 



I 
I -  
I -  
i 
i 
I 
1 
I 
I 
I 
1 
1 
I 
I 
I 
1 
1 
I 
I 

Calculus of Variat ions 2. 

If w e  apply the method developed e a r l i e r  t o  th i s  problem, 
we see that, f o r  an arbitrary point  a+n ,  

(4 )  Min = Min Min 
b] u[a, .+a] [U(a+n, b)].  

I n  o the r  words, no matter  how w e  get t o  ,+A, the remaining 
port ion of the curve over t h e  i n t e r v a l  [.+A, b] must be 

a minimizing a rc .  

It is  important t o  p o i n t  out  a t  th i s  point  that there 
is a dua l i t y  between the  dynamic programming approach 
introduced here and the calculus of va r i a t ions  approach 
discussed earlier. The calculus of va r i a t ions  considers 
the minimizing a r c  t o  be a locus of points ,  and at tempts  
t o  f i n d  it by solving d i f f e r e n t i a l  equations.  
of dynamic programming regards the extremal as an envelope 
of tangents,  and attempts t o  determine the  optimal d i r e c t i o n  
a t  each point  on the extremal. 
be extended t o  feedback control  and o the r  problems; the 
la t ter  can be extended na tura l ly  t o  include s tochas t i c  
and adapt ive control  elements, s ince  a t  each point ,  a t  each 
stage of the process, i t  gives as ins t ruc t ions  the  optimal 
d i r ec t ion  i n  terms of present posi t ion.  

The theory 

The former theory cannot 

Let us  rewrite (3)  using (4) .  

3 7 
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Here w e  have already put  Min ’ j M i n  as n+O. 
Expanding i n  powers of , where A is  inf in i tes imal ,  if 

a < b j  

u (a ,  a+A> u l ( a >  

f ( a + A ,  c+ul(a)  A ) ]  + O (  A2). 
Final ly ,  expanding once more and l e t t i n g  A-0, we obtain 

For fu r the r  d e t a i l s  and p a r t i c u l a r  references,  see Applied 
Dynamic Programming by R .  Bellman and S. D r e y a s ,  Princeton 
University P res s j  Princeton, N.J.) 1962. 

To i l l u s t r a t e  the process, consider the problem 

4 b 

u(a)=c  a 
f ( a o  c )  = Min I (u12 + u2 + U d t -  ( 8 )  

This can be transformed by means of  the above algorithm t o  

By ordinary d i f f e r e n t i a l  calculus ,  we minimize over the 
funct ion ul(a),  and w e  have the problem 

t ‘  

where the boundary condition fo l lows  from the de f in i t i on  

3 8  
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of f .  
numerical techniques o r  by equally standard methods f o r  
partial d i f f e r e n t i a l  equations. 

This problem can be solved e i t h e r  by standard 

Problem (1) is a very nice,  but a r t i f i c i a l ,  problem 
because there are no cons t ra in ts  on the minimizing a rc .  
To make it more r e a l i s t i c ,  w e  add cons t ra in t  of the form 

Equation (6 )  becomes 

where, by assuring that A is sma l l ,  w e  can drop terns 
a(  A2) and smaller. 
s t r a i n t  makes the problem more d i f f i c u l t ;  computationally, 
it is e a s i e r  t o  solve.  To i l l u s t r a t e  the last remark, 
consider  how one might solve the problem computationally. 
We first  divide the time scale  i n t o  sub-intervals  of con- 
venient s i z e .  O f  course, the adcuracy of the r e s u l t  w i l l  
depend on the mesh s ize ;  but f o r  the sake of  argument, l e t  
it be of length a , a small but f i n i t e  number. 
think ei ther  of taking s t eps  a*a+n v a + 2 n ,  . . . o r  
b, b -A,  b-2A, .... Since w e  know f ( b ,  c )  = 0, l e t  us 
s t a r t  a t  t = b .  

Analytically,  the addi t ion  of a con- 

We can 

Knowing f ( b ,  c )  = 0, take a = b - a a n d  replacing 
, u '  by v 

33 
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The last tern i n  the brackets  must vanish i n  view of  
the end condition i . e .  f ( b ,  c )  = 0 f o r  any c .  Com- 
putat ional ly ,  (13) can be solved by a simple enumeration 
process which producesg f o r  a f ixed  value of b y  a t ab le  
of f ( b - n ,  c )  f o r  a range of c and v. 

The r o l e  of the  cons t ra in t ,  of course, i s  t o  allow 
us t o  scan a mdch smaller range of v than would be neces- 
sa ry  wi thou t  imposing a cons t ra in t .  

The next s t ep  is t o  choose a = b - 2A. The equa- 
t i o n  (12)  becomes 

where w e  know a s e t  of values f o r  the last term i n  the  
bracket from (13). 

Graphically, Fig.  2 ln an a - c plane,  w e  a r e  given 
f ( b ,  c )  along the  l i n e  a = b. 

c 

1 '  
$ - & A  'e- -4 

Fig. 2 
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u - t plane /cc 

e 

The computation proceeds as follows: choose a grid of 
values f o r  c, say, c = kn, k = 0 ,  1, 2,. . . .,R. Using 
(13) we then compute a sequence of values of f(b - A ,  c) 
along the line a = b - A .  
plete set of values of f(a, e )  to complete the calculation. 

Step-by-step we build up a com- 

4"- 1.) < 

&,AI 

the "policy" is the choice of v(a, c), i.e. the slope of 
the minimal arc, at each stage of the process of marching 
out a solution to I3-e problem of optimizing the integral (1). 

By means of this simple algorithm a whole set of values 
of f(a, c) I s  found; one can in principle obtain from 
this Information a sensitivity analysis, information 
which is usually more important in engineering applications 
than just t k  one answer provided by tkclassical ap- 
proach. One actually can't be Sure that the one answer 
from classical analysis is the only answer or the answer 
sought. On the other hand, this aple computational 
method circumvents questions of continuity, differen- 
tiability, uniqueness, and, in particular, stability 
problems associated with finite difference methods for 
solving equations such as (10). 
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As an example of an i n s t a b f l i t y  which a r i s e s  i n  even 
a v e r y  simple case consider 

(15) Min JT (uI2 + u2) d t  T f ixed 
u (0 )  = 1 0 

The Euler  equations are 

(16) U" - u = 0 u ( 0 )  = 1 u ' ( T )  = 0 

The solut ions a re  of the form et and e-t. 
solve t h i s  equation numerically regardless of the mesh 
s i ze ,  A t ,  round-off would introduce inf luences O(e ) 
and a f t e r  j u s t  a few s teps  the so lu t ion  would be dominated 
by the  e term. 

If one tr ied t o  

t 

t 

I n  the method of dynamic programming we a r e  not i n t e r -  
ested i n  f inding the solut ion,  i . e .  t he  locus of points  
forming the optimal t r a j ec to ry  over and over again f o r  
each i n i t i a l  value. We j u s t  want t o  solve the problem 
i n  the  most d i r e c t  and e f f i c i e n t  way and get  t o  the  end 
point  optimally. 
way, it doesn' t  matter,  f o r  we are in t e re s t ed  only i n  the 
part of t h e  t r a j ec to ry  that remains. 
w e  merely must make a s l i g h t  change i n  d i r ec t ion  on the 
next  dtep.  
inherent ly  s t a b l e .  

If we make a s l i g h t  e r r o r  a$ong the 

An e r r o r  means 

The process has feedback aspects  and hence i s  

The above computational scheme i s  feasable  on mo- 
dern d i g i t a l  computers considering the  s i z e  of current  
rapid-access s torage.  Slow access s torageg e.g.  mag- 
n e t i c  tape,  i s  ignored i n  view of the large r e t r i e v a l  
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Calculus of Variat ions 8. 

t A m .  For example, an u3M TO7" can s t o r e  approximately 
32,000 t en -d ig i t  numbers. If o u r  problem, equivalent ly  
s t a t ed ,  i s  

then, f o r  a reasonable g r id  s i z e  on the c - sca le ,  say, 
c = m 6 (/mi 6 M ) ,  w e  must compute 2 M  + 1 values of c .  
A t  each c, the values of f o ( c )  and go(c)  must be s tored .  
For the minimization process w e  might scan the values of 
Ivl 6 k, for each value of  which w e  must s t o r e  f l ( c ) ,  

v,(c), e t c .  Thus a t  th i s  stage w e  requi re  s torage capa- 
c i t y  of the order  of 3(2M + 1) locat ions.  O f  course, 
by var ious t r i c k s  one can s t o r e  up t o  100,000 t en -d ig i t  
numbers, but l e t  us  disregard that i n  t h i s  estimate. A 
l i t t l e  a r i thmet ic  soon convinces one tha t  the a c t i v e  s to -  
rage of  any modern computer can be exceeded i n  any moderate 
problem. 
f e a s i b i l i t y  of the method. 

T h i s  is the l i m i t a t i o n  on the computational 

On the o the r  hand, regardless  of the complexity of 
the  intregrand funct ion in  

o r  the cons t ra in t  functions,  

i = 1, ....., K 

the time required t o  make typ ica l  ca lcu la t ions  by means of 

4 3  



Calculus of  Variat ions 9 .  

the  corresponding funct ional  equation i s  the  order  of min- 
u t e s  even f o r  a very f i n e  g r id .  

For the  problem 

the  above r e s u l t s  carry over d i r e c t l y  if, now, a l l  terms 
are interpreted as vectors ,  e.@;. 

The choice of a pol icy becomes the choice of  two direc-  
t ions,  

j t I t  

one i n  u1 - t plane,  and one i n  the u2 - t plane.  The 
computational f ' e a a b i l f t y  again depends on the  rapid- 
access  storage capacity of the  d i g i t a l  computer. I f  a 
mess of N x N points  is  chosen i n  the cl- c2 plane, w e  
have N g r i d  poin ts .  I f ,  f o r  example, N = 100, a not 
unreasonable numbero N = 10 , which is  already the  order  
of the la rges t  s torage f a c i l i t i e s  cur ren t ly  i n  use.  We 
see the  fundamental d i f f i c u l t y  i s  the Curse of Dimen- 
s iona l f ty .  

2 
2 4 

I I  

11 

The amount of space required t o  s t o r e  a funct ion for  values 

4 4  
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of the argument can be redu 

10. 

ertain techniques. Let 
us considerg in particular, the method of polynomial approxi- 
mation of a function of one variable f (c) . 
behaved function can be approximated in the form 

Every well- 

N 

for example, as a polynomial approximation 
N 

k=O 
k f(c) C a c k (23) 

or, as a solution to a differential equation 

k=O 

If we are told for example that polynomial approximation 
is used, we must store the vector a = [ao, al, a2,. . . . ,aN] 
To recreate the function for a' given value of c 

This involves 2 ( N  - 1) multiplications. Of course, the 
number of multiplications can be reduced by writing the 
polynomial as 

then, 
we must, by the naive approach compute c, c 2 3  c ,....> c N . 

( ... ( ((%c + c + %-2 )c + ........ + ao) 

which involves only N multiplications. 

In the more general case, assume that we will store 
To save storage, we must the function in the form (22). 

pay in time for recreation. Thus we seek@K:(c) that 

i 

4 5  
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are easi ly  computed. 
squares  approximation 

If  @ k ( c )  = c , -1 6 0 * 1 l e a s t  

leads t o  system of l i n e a r  a l g e b r a i c  equat ions of  h ighe r  
dimensional i ty  than i s  convenient t o  so lve .  On the o t h e r  
Rand, it is e a s i e r  t o  m a k e  u se  of o r thogona l i ty  p r o p e r t i e s  
of s p e c i a l  polynomi-als - they  are s t i l l  polynomials - 
that have t h e  advantage of s a t i s f y i n g  simple three 
term recurrence.  
Pk ( c  ) the  Legendre polynomials. Then 

For  example, one could r ep lace  ck by 

leads t o  the usual expression f o r  F o u r i e r  c o e f f i c i e n t s  

-1 

By making use  of such methods, t h e  t i m e  requi red  t o  
so lve  a four  dimensional problem of the type  discussed 
above can be reduced to about two hours p e r  s t age .  



Dynamic Programming 

and 

Stochastic Control Pracesses  

by 

D r .  Richard E. Bellman 



Qvpmi~@ Rrogrammi..ng and Stochastic Control Processes 

After having discussed the calculus of variations and 
Pl%usr,xaa7;ed how dynamic programming techniques may be used 

t>reat problems In this area, let us discuss the same 
s u h , j e C t  in rather an abstract way. This will be useful 
because we want to turn to the study of stochastic control 
and adaptive con t ro l ;  if we see a topic in a more general, 
more abstract setting, it makes it easier to extend the 
*echnia.iies that we ve been using so far. 

Dynamic programming is really an advertising name f o r  
It mathematical theory of multi-stage decision processes. 

fs ratner interesting to ask, why the n h e  dynamic pro- 
g m m l n g ?  Why not something nice and respectable such 
as the mathematical theory of multi-stage decision pro- 
cresses? Pimt of all, it's clear that for advertising 
purposes, the latter is too long t o  stretch across a page. 
But the real reason was that back in 1949 and 1950, when 
1 was working on the problems which led to the development of 
t h i s  theory,  I was thinking in terms of decision processes. 
7, d i S d r Y t  l i k e  the t e rn  decision process itself because 
decls ion theo ry  already existed and was tied in with the 
wosid o f  scatfstics. The problems of decision theory 
are part,fcular cases of dynamic programming prbblems, but 
f..hey're quf%e'special%zed. I thought abqut planning, 
b u t  planning 'Mas definitely out for other reasons. 
smut .thatJ time, programming had come in. Programming was 
r?, WE! which had m real meaning, so it was very useful. 
i\v.d, of c o a ~ s e ,  if you wanted to be strict about it, 
pmgsarmirag really does mean thinking of a program, which is 
~lan_ni..ng (making decisions). Finally I wanted an adjec- 
t i v e  TO nodify programming because there was another tech- 
nique c a l l e d  linear" programming with which I didn't want 
t o  gs t  confused. It was necessary to emphasize the fact 

Just 

4 3  
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Dynamic Programming 2. 

that th i s  was a mult i -s tage process that dea l t  w i t h  pro- 
cesses  over tfme. 

The c l a s s i c a l  word of mechanics f o r  non-static,  time- 
varying processes is dynamic. Dynamic programming sounded 
l i k e  something that everybody should do. So I used the 
name, and, as I say, it has the very n i ce  advantage of 
seeming t o  mean something b u t  meaning nothing; you can 
do anything you want under th i s  guise .  

Actually I got  in te res ted  in  the  program and problems 
of t h i s  nature  i n  connection w i t h  a q u i t e  s p e c i f i c  prob- 
lem. 
Force was playing a very important r o l e  as a de ter ren t ,  
and S.A.C. (S t ra teg ic  A i r  Command) was the most important 
weapon that w e  had. The question w a s  how t o  use S.A.C. 
i n  the most e f f i c i e n t  way. 
very na ive ly  i n  terms of one massive raid because, as 
usual ,  the generals  and admirals were always f i g h t i n g  the 
last war extremely wel l ,  analyzing it, and wr i t ing  their  
memoirs. A s  Churchill ,  I th ink ,  said about some famous 
general ,  
This leads one t o  an  analysis  of the  las t  w a r .  
thought about bombing raids, they thought about the 
bombing raids from London over  Berl in ,  a dis tance of 
about fou r  o r  f i v e  hundred miles, so  tha t  planes could 
come and go, 

When I was a consultant a t  Rand i n  1948, the A i r  

I n  the  beginning, people thought 

"He so ld  h i s  l i f e  very dear ly  t o  a publ isher .  I1  

When they 

Eventually, by 1948 o r  1949, somebody looked a t  the 
map and rea l ized  that  w i t h  the ranges w e  then had it was 
impossible f o r  planes t o  come and go, expecial ly  i n  day- 
l i g h t ,  which meant t ha t  if yau had a l a rge  number of tar- 
gets,  you had t o  think i n  terms of a mult$-s t r ike operat ion 

4 9  
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i n  which you bombed 8 c e r t a i n  number o f  taygets,  a c e r t a i n  
number of p lanes  returned,  ysu %+,tacked some f u r t h e r  
targets, and SQ 011, This had many complications.  I n  the  

f i rs t  place,  it wae a mul t i - s tage  a f fa i r ,  Secondly, i,t 
had stochastic e lenen t s  i n  i t .  You c o u l d n 7 t  r e a l l y  p l an  
your second raid efficlentlg before  you knew what happened 
on the  f i m t  raid. Nonetfieless, you had t o  decide what 
t o  do a t  the f i rs t  ra id .  Some new mathematical f e a t u r e s  
were d e f i n i t e l y  p re sen t  e 

Like many mathematfcal e f f o r t s  i n  connection w i t h  new 
problems, 1 came out with some good techniques,  a l though I 
never made any con t r ibu t ion  t o  the o r i g i n a l  problem. 
For tuna te ly ,  time took care of tnat, as ,I mentioned ear l ier .  
T h i s  is  the s i t u a r i o n  o f  most mathemacical endeavors -- 
one does v e r y  i n t e r e s t i n g  work, very nice theo r i e s  come out  
of i t ,  and f o r t u n a t e l y ,  5echnology takes ca re  of the a c t u a l  
problems, 
mul t i - s tage  dec is ion  p ~ o c e s s e s ,  I r e a l i z e d  q u i t e  qu ick ly  
that these  problems were common t o  the f i e l d  o f  engineer ing 
i n  the way of c o n t r o l  theory,  and i n  the way of ca l cu lus  
of v a r i a t i o n s .  We had similar problens i n  the f i e l d  of 
economics, operaZions research ,  medical diagnos is ,  and 
ac ross  the  board ,  Mult i -s tage dec i s ion  theory i s  one of 
the most important mathematical t h e o r i e s  as f a r  as a p p l i -  
cations a r e  concerned. There are many mathematical problems, 
interesting for. the iy  own sake, i n  the f i e l d ,  So l e t  m e  
now discuss  the t.9ir.g i n  an  a b s t r a c c  fash ion ,  intr*oduce a 
f e w  bi+,s  of t e m i n o l o g y ,  and then apply thls technique t o  
s t o c h a s t i c  zon’brol processes  

After 1 got, I n t e r e s t e d  i n  the whole f i e l d  of 

We shall  t h ink  a b s t r a c t l y  in t e r n s  of the system. 
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The system may be a s a t e l l i t e ,  a decoy, a factory,  o r  
maybe a human being, A basic element of the theory i s  
one systen.  
mathematically is  ta Introduce a way of descr ibing it .  
L e t  us  introduce a s t a t e  var iable ,  a vector  p which 
usua l ly  depends on time t .  For example, i f  we're t a lk ing  
about a s a t e l l i t e ,  one s t a t e  var iab le  would be i t s  pos i t ion  
and ve loc i ty  at a c e r t a i n  time. 
fuel,  and/or severa l  o the r  f ac to r s .  For s implici ty ,  
l e t ' s  take time t o  be d i sc re t e  -- t = O,, 1, 2, .... 
t h i s  way we el iminate  a'number of spurious problems con- 
cerning cont inui ty  and d i f f e r e n t i a b i l i t y ,  which allows the 
p r i n c i p a l  problems t o  come out  rather c l ea r ly .  

The s%andard technique f o r  studying a system 

It m i g h t  be the amount of 

I n  

One of t he  d i f f i c u l t i e s  w i t h  the c l a s s i c a l  calculus  
of va r i a t ions  is tha t  an enormous amount of time is spent 
worrying about exis tence and uniqueness of var ious types 
of solut ions,  and very l i t t l e  time is  devoted t o  such 
quest ions as whether you can ge t  a t  these so lu t ions  if 
they e x i s t ,  If w e  make time d i sc re t e ,  then w e  automatical ly  
bypass a l l  pmblems of exfstence and uniqueness. 
are deal ing w i t h  the  minima o r  maxima of f i n i t e  sets of 
q u a n t i t i e s  o r  w i t h  f i n i t e  r-umbers of p o s s i b i l i t i e s .  

We now 

Clearly,  one paramount d i f f i c u l t y  i s  whether w e  have 
a feasible technique f o r  obtaining so lu t ions .  This is - the 
important mathematical problem i f  you ' re  dealing w i t h  the 
physical  world. L e t  us  a sk  ourselves  w h a t  happens t o  the 
system over time. Assume t h a t  t h i s  system is  s ta t ionary ,  
i . e . ,  the  mechanfsm doesn ' t  change over time, The s t a t e  of 
the system changes over . t ime,  but the t ransfonnat ion 
whereby the  system goes f r o m  a state p t o  a neighboring 
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s ta te  p1 is the same. 
t r o l  aspects, l e t ' s  look a t  the c l a s s i c a l  d e s c r i p t i o n  of 
mathematical physics .  If w e  de f ine  the system by means of 
a s t a t e  variable, then w e  in t roduce  a cause and e f f e c t  
r e l a t i o n .  ~f t h e  system is  in  s ta te  p a t  time 0, it  w i l l  
d e f i n i t e l y  be i n  state p1 = T(p) a t  time I, where T i s  
a given transf'urmation. Now the s tudy of the system over  
time is  j u s t  the  s tudy  of the i t e r a t i o n  of th i s  t r a n s f o r -  
m a t  i on  : 

Disregarding the dec i s ion  and con- 

T h i s  i s  c l a s s i c a l  a n a l y s i s ,  and i t  stems from the ideas of 
Poincarg,  Hadamard, Birkhoff ,  e t .  a l .  

We disregard the a c t u a l  form of the  equat ions f o r  the 
moment and see i f  c e r t a i n  p r o p e r t i e s  of the t ransformat ions  
lead u s  t o  c e r t a i n  conclusions about t he  behavior of the 
system. C las s i ca l  mathematical phys ics ,  i n  many cases ,  
becomes t h e  study of the i t e r a t i o n  of c e r t a i n  transforma- 
t i o n s .  I n  t h i s  way, of course,  y o u ' r e  led t o  the Ergodic 
theorem and fixed p o i n t  theorems, e t c .  I t ' s  a very n a t u r a l  
t r a n s i t i o n .  Those of you who are i n t e r e s t e d  i n  pursuing 
some of t h i s  may refer t o  the book I menhioned before on 
adap t ive  con t ro l  processes ,  where y o u t l l  f i n d  some d i s -  
cuss ion  of t h i s ,  as w e l l  as some re fe rences .  

Suppose we're i n t e r e s t e d  i n  c o n t r o l  theory ,  Not only 
are w e  interested i n  s tudying the evolu t ion  of the system 
over  t i m e ,  bu t  because we're no t  satisfied wi th  the evolu- 
t i o n  of the  system over  time, w e  w i l l  attempt t o  change it .  
How shall  w e  pp r t r ay  that i n  a n  a b s t r a c t  f a sh ion?  We can 
t h i n k  of con t ro l  i n  the fo l lowing  way: The system is  i n  



state p. @or,trol means that w e  have a choice of the t rans-  
formatfoii that we @an exer t  upon the system. But usual ly  
when we give something and take something, there is  a 
c e r t a i n  c o s t ,  We may be able to get more control  and, say, 
minimize the deviat ion from a desired s t a t e ,  but only a t  
the expense of addi t iona l  cost  i n  resources o r  time. We 
have t o  balance the coat of cont ro l  w i t h  the cos t  of devia- 
t fon  from desired state.  Symbolically, given a Set  of 
t ransfornat ions T(p ,  q ) ,  state S: p -3 p1 = T(p,  ql), 
where q is the control  var iable .  

For example, i f  we:re ta lk ing  about cont ro l l ing  a 
t r a j e c t o r y ,  a t  each p a r t i c u l a r  point  our  transformation 
t e l l s  us  where the p a r t i c l e  w i l l  be a t  the end of a c e r t a i n  
time. One can think of q as the d i r ec t ion  that w e  choose 
a t  a given poin t .  As a r e s u l t  of choosing q at  one point ,  
w e  end up a t  a c e r t a i n  other  point  a t  the end of a u n i t  of 
time. So it's i n t e r e s t i n g  t o  think of control  theory as 
a choice of a transformation t o  exer t  on the system a t  
each time, 

It's a l s o  important t o  r e a l i z e  that the d i c i s ion  t o  
do nothing i s  a very important one. That's a l s o  one of the 
con t ro l  var iab les .  Many people, of course, think that 
they ' r e  doing nothing when they m a k e  no decis ion.  This 
is a d e f i n i t e  decis ion which very o f t en  is  the  worst 
th ing  that  one can do, O f  course, one has t o  account f o r  
the f a c t  that  ve-7 of ten  you can be ruined by means of a 
theory.  One must balance these two ideas. I t ' s  important 
t o  r e a l f z e  that ,  i n  many s i tua t ions  involving uncertainty,  
you can only be destroyed by a theory.  If you d id  nothing 
and l e t  gourself  just be o s c i l l a t e d  by random forces ,  you 
know that a f t e r  a large number of s t e p s  you ' re  only going 

5 3  
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t o  be O(&) from where you were i n i t i a l l y ,  but if you have 
a theory,  you could be O(n) away. 

We said control  is the problem of choosing a t rans-  
formation. 
p, = T(p, q , ) .  

We choose q1 and the state var iab le  p and w e  ge t  
A t  p, we choose another control  var iab le  

I & A. 

and w e  ge t  t o  p2 = T(pl ,  q2) ,  and so  on. The 

cess is then equivalent t o  a choice of the qi 
s tage.  

The difference between a control  process 

control  pro- 
a i  each 

and an ordinary 
process i n  mathematical physics i s  the following: 
ftmt place,  we agree that  we're j u s t  studying the behavior 
of t h e  Bystem, not t ry ing  t o  a l te r  it. 

I n  the  

I n  the  second 
place,  we have no evaluat ion of the outcome of the system. 
We don ' t  pa r t i cu la r ly  care  what happens one way or the  
other .  In a control  process, we have the  c r i t e r i o n  funct ion 

We may want t o  ge t  someplace as quickly as possible  or 
subject  t o  m i n i m u m  f u e l ,  or we may want t o  keep the deviat ion 
between what's happening and some desired s t a t e  as small as 
possible ,  and so on. 

We care what goes on i n  a control  process.  The c r i -  
t e r i o n  function ( 2 )  is  some funct ion of a l l  the states and 
of the  decision, which makes things much too complicated. 
To simplify the  ideas ,  l e t ' s  consider control  processes 
of the  following type: 
of s tages  and t h a t  the  c r i t e r i o n  has the following form: 

Assume tha t  t h e r e ' s  a f i n i t e  number 

li 3 
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Dynamic Programing 8. 

where g(p,) is  some function of the f i n a l  s t a t e .  
is sometimes called terminal control. I n  many s i tua t ions  
you don't  care w h a t  happens during the process. You only 
care what tmppens a t  the very end of the process. For 
example, w i t h  a cer ta in  amount of fue l ,  you may wish t o  
get  t o  Mars. You dons t  par t icu lar ly  care w h a t  path you 
take as long a$ you get  there. Next, we assume that at  
each stage the re ' s  a cost f o r  the  state and one f o r  
control.  A typ ica l  example of t h i s  would be an economic 
s i tua t ion  i n  which one is trying *o  meet'a given demand. 
Suppose the demand curve i s  as shown i n  Fig. 1. 

This 

V" 

Fig. 1 

Let your control v a r i a b l e  be the number o f  men employed. 
You have a choice of  hir ing o r  f i r i n g  men a t  each stage. 
You t r y  t o  fo l low the demand curve w i t h  your s e r v i c a , . b u t  
when you a r e  above the demand curve, you must charge your- 
s e l f  w i t h  having people whose s a l a r i e s  you were paying, 
though they were producing nothing. When you are below, 
you have t o  charge yourself fo r ,  perhaps, buying supplies 
from a competitor a t  a premium price.  So you have the 
s i tua t ion  where a t  each point you have two costs,  one the 
cost  of control, and one the cost of the deviation from 

2 ,  .- F 
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the  s ta te  which you'd l i k e  t o  be i n .  T h i s  i s  typ ica l  of 
control  processes. Abstract ly ,  the problem i s  

(4) ..., R 

If once again we assume there  a r e  only a f i n i t e  number 
of values of p and only a f i n i t e  number of values of q, a 
f i n i t e  number of s t a t e s ,  and a f i n i t e  number of  control  
variables, the re  i s  Qa-qW?shiofl of:e&istehce bf- the 'sblwkion.  
We don ' t  have t o  make any assumptions about cont inui ty ,  f o r  
the problem is completely a f i n i t e  problem. We have t o  
take the smallest value of R from among, i n  most cases,  
a very large number of possible  values .  
stages i s  large,  and i f  the dimensions of q a r e  f a i r l y  
large, i t ' s  c l e a r  that we don ' t  want t o  tack le  t h i s  problem 
by enumeration. On the  o ther  hand, w e  don ' t  want t o  tack le  
it by calculus because, i n  many cases,  the funct ions are 
too  complicated o r  the q's a r e  d i sc re t e .  For example, 

I f  the number of 

each q may j u s t  have the values +1 o r  -1. We must do 
something b e t t e r .  We have t o  have an algorithm which re- 
duces a multi-dimensional problem t o  a sequence of lower 
dimensional problems. 
t i a l  problem, w e  want t o  make our decis ions i n  sequent ia l  
fashion corresponding t o  the a c t u a l  control  problem. The 
minimum depends upon two quan t i t i e s ,  the  i n i t i a l  s t a t e  
p, and the number of s tages .  

Looking upon the  problem as a sequen- 

( 5 )  ..., 

O f  course, i t  a l s o  depends upon the forms of the funct ions,  
but they don ' t  change. They are given t o  us .  The only 
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DgnaJnic Programming 10. 

things tha t  change as we go along a r e  'the current state 
and t h e  number of stages remaining. We could write the 
runctional dependence as f(N, p ) ,  but we usually use d i s -  
c r e t e  numbers as subscripts. 

We shall now use the method of continuity comparatives. 
To i l l u s t r a t e  the a l te rna t ive  methods, consider the following 
case: If you were studying re l ig ion  o r  l i ngu i s t i c s  o r  
anatomy, there  a r e  several  ways of proceeding. F i r s t  you 
can take an individual religion o r  individual language o r  
an( individual organism, and you can study t h i s  very com- 
p le te ly ,  making a detailed,  isolated study. On the other  
hand, you can take a family of re la ted  objects  and t r ace  
the t r ans i t i ons  as the organisms increase i n  complexity. 
It 's very often much eas ie r  t o  understand a very complex 
organism as a limited form o r  as a sister form of  o ther  
organisms than it is t o  understand the organism i n  i so la -  
t ion .  This is the very important comparative method. 

In mathematics, the method of continuity s a p  that 
i f  you want t o  study a cer ta in  object,  put it i n  a family 
of  objects and go continuously f r o m  a member of the 
family that you understand qui te  well t o  the  member which 
you don't  understand i n i t i a l l y  as well. And by t racing 
the propert ies  of the object i n  a continuous way, you can 
explain the propert ies-  of  the desired object.  This is, 
generally speaking, the imbedding technique. If you want 
t o  study a pa r t i cu la r  problem o r  a pa r t i cu la r  process, you 
must imbed it i n  a family of similar processes, and you do 
it in such a way that you have a very simple t r ans i t i on  
from a simple member of the family, which you understand, 
t o  the more complicated member. 

57 



11. Dynamic Programming 

In the present case, the simplest problem is the single- 
stage process. 
it is necessary to make only one decision. We wish to go 
stage by stage from the one-stage process to the two-stage 
process to the three-stage process, etc. Of course, the 
fundamental observation is that, inla pSocess of this 
type, if we start out initially in an N-stage process, 
after one decision, we're going to be in an N-1-stage 
process. So we have a simple way of going inductively 
frm N to N-1, a sort of backwards induction. 

We bypass the multi-stage aspects, and find 

We must make some initial decision, the choice of ql. 
That's going to cost us some function of the initial state 
and the initial decision. 
and we're in the new state pl = T(p, q,). It's clear that 
no matter what state we're in now, and no matter how many 
stages are left, we're going to proceed so as to minimize. 
This is just an extension of this geodesic property dis- 
cussed'earliasc The tail must always be optimal, This 
is worth dignifying under the name of the principJe. 
call it the Principle of Optimality. 
good English word, and therefore, one can use it freely.) 
The tail of an optimal policy must itself be an optimal 
policy with respect to the new state. It is I the property 
we've used over and over again. 
what remains must be the minimum. 
fashion. 

Now we have M-1 stages remaining, 

I 
(Optimality is not a 

Regardless of what q1 is, 
We continue in a minimum 

The question is how to choose ql. We must choose q1 
so as to balance the cost incurred immediately, and the 
cost incurred over the remaining N-1 stages. 
equation is 

Our functional 
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Dynamic Fmg?mlmfng 12. 

This is our general abstract formulation. We still haven't 
defined what  the states are. 
sional, inflrrite dimensional; they could be probability 
distributions, as they are in many cases; or we've said 

They could be finite dimen- 

that, if a system is specified by a state, a decision is 
equivalent to a change of that state, and at each stage 
we incur a certain cost which depends upon the state and 
the decision which is made. We have decomposed a multi- 
dimensional problem into a sequence of one-dimensional 
problems. We make only one decision per stage. 

Of course, this is telling us more than we ever wanted 
to h o w ,  because we only wanted to solve one problem. Now 
we have to solve a whole sequence of problems, not only a 
sequence of problems in N, but for arbitrary initial states. 
The answer to that is that most often in engineering problems 
you want a sensitivity analysis. 
just the information that is desired. It tells us how the 
minimum cos t  varies as a function of the initial state and 
the number of stages. 

The solution to (6 )  is 

Letgs introduce just two more terms. The policy 
Is what we do in terms of where we are, 
set of functions which tells us what we do in terms of the 
state and the time remaining. 
which optimizes. It provides the minimum cost o r  the maxi- 
mum return, etc. 

The policy is a 

An optimal policy is a policy 

There is another interesting consequence of thinking 
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i n  terms of  p o l i c i e s  as funct ions.  For example, suppose 
we want t o  compute the minimum t i m e  required t o  reach the  
o r i g i n  frrhn .i some point  i n  phase space. I n  t h i s  case, 
we get an equation l ike (6 ) .  
required t o  go someplace as a r e s u l t  of the first decis ion,  
p lus  t h e  rnin3mu.m time required t o  go from the new point .  
This is  t h e  geodesic property.  I f  we have an equation 
l i k e  ( 6 ) ,  w e  don ' t  have the recurrence property that  we 
had before. So far, we have spaken i n  terms of  problems 
where w e  staTted with a known funct ion.  1We:hhen used the 
funct ional  equation t o  ge t  the second and th i rd  funct ions,  
and by simple r epe t i t i on  of i t e r a t i o n ,  w e  a r r ived  a t  a de- 
sired solut ion.  Now we have the unknown funct ion on both  
s ides ,  as i n  t h e  optimal rout ing problem discussed e a r l i e r .  

The minimum time is  the time 

There are two procedures t o  handle t h i s  case.  One is  
approximation i n  funct ion space, which proceeds i n  the  following 
way:  
Next we i t e r a t e  over the funct ions.  This is  what is  known 
as successive approximations, but of a very spec ia l  type.  
It,'s successive approximations i n  funct ion space. 
can proceed i n  another way, gfv ing  equal emphasis bo th  t o  
the return funct ion and t o  the pol icy funct ion.  One deter-  
mines the o ther .  If we have the equation 

We guess an i n i t i a l  funct ion f l .  Then w e  compute f 2 .  

We 

then a choice of q ,  q (p)  t e l l s  us how t o  proceed. On 
the o ther  hand, c)nce,.we* have f ,  then q is  determined as 
the  funct ion which minimizes (7) .  So there  Bs a dua l i ty  
between the two. T h i s  is  a more general  vers ion of t h i s  
Euclidian dua l i t y  which I mentioned before ,  the locus of 
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polnts - envelope of tangents duali ty.  We approximate 
either i n  function space o r  i n  policy space. 
i n  policy space goes the following way: 
i n i t i a l  policy qo(p) .  
the policy. 

Approximation 
F i r s t  I guess an 

Then 1 determine the return from 
, 

In other  words, I get t h e  return by j u s t  i t e r a t ing ,  assuming 
I ' m  doing the same thing at each stage -- picking qo t o  
be qo(p). Next, we f i n d  q1 as the q which minimizes 

1 

This says I ' m  going t o  approximate i n  policy space i n  the 
fo l lowing  way: F i r s t  I w i l l  pick a policy which 1'11 
c a l l  A .  I just apply A over and over again. If I k n o w  a t  
a given s tage that I ' m  going t o  apply A over and over 
again, which gives me a cer ta in  return,  w h a t  should my 
best f irst  policy be? The answer may be t o  apply B first .  
Then I ask what the best second policy is, knowing that I ' m  
going t o  first choose B, followed by A over and over. The 
answer may be 3. But now I re turn  t o  the question, i f  I 
apply polfcy BBAAAA..., i s  there a better first policy, 
say, C? In t h i s  way, the init ial  approximation s l i d e s  
away t o  in f in i ty ,  and you end up w i t h  an optimal approxi- 
mation. 

T h i s  i s  qui te  different  from the usual approximation. 
You're not j u s t  approximating i n  function space, but im- 
proving the policy a t  each stage. It can be shown that 
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t h i s  g ives  a monotone approximation, 
upon any-body e l s e ’ s  po l i cy  a t  very least .  T h i s  i s  a n  i m -  
p o r t a n t  po in t .  
choose t h e  value of q before  choosing qo, we get back our  
o l d  func t ion .  If we choose the minimum q, w e  have some- 
t h i n g  d e f i n i t e l y  less, I would l i k e  t o  emphasize the i m -  
pox%ance of the  po l i cy .  It i s n u t  so important i n  d e t e r -  
m i n i s t i c  processes when one can use  convent ional  represen- 
t a t i o n s ,  but f o r  more complex processes  where one might 
no t  be able t o  descr ibe  t h e  problem i n  conventional terms, 
then a pol icy is  s t i l l  s e n s i b l e .  T h i s  leads t o  something 
I want t o  mention b r i e f l y  without going i n t o .  
descr ibed the pol icy ,  i . e . ,  we have s p e c i f i e d  the type of 
con t ro l  pol icy welre going t o  use,  then, even though the 
concept of a r e t u r n  func t ion  may not  be meaningful because 
we may not know cause and e f f e c t  wel l ,  w e  can ca r ry  out  
e i t h e r  i n  real  l i f e  o r  with analog o r  d ig i t a l  computers 
the s imulat ion processes .  We can ask what would happen 
i f  w e  used t h i s  po l i cy  o r  another  one. O f  course,  t h i s  i s  
J u s t  exac t ly  what i s  done i n  real  l i f e  s i t u a t i o n s  a l l  the 
t i m e .  People t e s t  ou t  p o l i c i e s  which a r e  s e n s i b l e  even 
i n  s i t u a t i o n s  i n  which they do no t  have any a n a l y t i c  
formulation o f  the problem. 

Thus you can improve 

In choosing q1 so as t o  minimize (g), i f  w e  

Once w e  have 

The concept of a po l i cy  tmendous ly  extends the scope 
of mthematfcs .  Conventional mathematical techniques w i l l  
not  carry over  t o  most r e a l  l i f e  s i t u a t i o n s ,  but  we can 
s t i l l  cons t ruc t  s imula t ion  ppocesses, think i n  terns of 
p o l i c i e s ,  and extend the s c i e n t i f i c  method, i f  no t  t h e  
pure ly  mathematical method. 
a simple thfng, whereas She ana ly%ic  s o l u t i o n  may be com- 
p l i c a t e d ,  This i s  more o f t e n  the case than no t .  For  
example, i n  cgurses on d i f f e r e n t i a l  equat ions,  you have 

A pol%sy w i l l  very o f t e n  be 

Q i L  
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Dynamic Programming 16. 

the following problem: A rabbit is at R, and there's a 
dog at D. The rabbit is going in the x-direction with 
a certain velocity, and the dog is constrained, i.e., its 
policy is always to point at the rabbit. The question: 
What is the dog's trajectory? It is the curve of pursuit. 

D 

Do3 
\ 
\ 
\ 
\ 
\ 

', R 

Fig. 2 

This is an extremely complicated expression analytically.. 
If you add a few more assumptions, you can get to the point 
where the differential equation cannot be solved explicitly. 
The actual analytic form of the curve can be quite compli- 
cated, but the policy is very simple. 
technique is used for actual interception problems. 

This simple pointing 

Stochastic Control Processes 

The word stochastic replaces the old word random. 
Random is a very bad word because the mathematical definition 
of random is almost exactly opposite from the definition 
implied by the ordihary English usage. To illustrate: When 
you tell a person you're doing things at random, it 
means there's no law, rhyme, or reason behind it. When a 
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mathematician says h e 3 %  picking  a number from t h e  i n t e r v a l  
[0, 11 , he means he has a d i s t r i b u t i o n ,  which i s  t o  say 
that i f  you peck a large enough sample y o u ' r e  going t o  
see a g rea t  deal of r e g u l a r i t y .  
q u i t e  d i f f e r e n t  from the mathematical usage, and f o r  that  
reason, f o r  exampleB id: you ask a person i f  0.121212121 
is  a random number, he w i l l  say i t  i m S t  s i n c e  it has too  
much r e g u l a r i t y .  Mathematically, of course, i t ' s  a per- 
f e c t l y  good random number and has as good a p r o b a b i l i t y  
of being chosen as any o t h e r  n i n e - d i g i t  number that you 
can th ink  o f .  Thus, i n s t e a d  of random, people use  the word 
s t o c h a s t i c .  S tochas t i c  doens l t  occur  very f r equen t ly  
i n  c o c k t a i l  conversation, You c a n ! t  t u r n  t o  the g i r l  next  
t o  you and ask, " D i d  anything s t o c h a s t i c  happen t o  you last 
n igh t?"  

So the English usage i s  

She might slap your face!  

S tochas t fc  comes from the Greek word amm, meaning 
''a target". Shooting arrows at a target was a haphazard 
affair, and so  from that you have t h e  word s t o c h a s t i c .  
d e a l  w i t h  s t o c h a s t i c  processes  because we d o n ' t  know how 
t o  make them d e t e r m i n i s t i c .  This  i s  a po in t  which i s n ' t  
emphasized s u f f i c i e n t l y .  P r o b a b i l i t y  is a very b e a u t i f u l  
device f o r  g e t t i n g  around ignorance.  Natura l ly  ou would 
l i k e  t o  g e t  r i d  of p r o b a b i l i s t i c  considepat ions whenever 
you can. The s imples t  example of t h a t  is  t o s s i n g  a coin.  
Theore t ica l ly ,  when you t o s s  a coin,  If you know the angle  
of i n c l i n a t i o n  and the f o r c e  that  you g ive  it, the  e l a s t i c  
p rope r t i e s  of the f l o o r g  e t @ , ,  you should be able t a  p r e d i c t  
whether the coin w i l l  come u p  hasads or tails, 
highly  unstable  s i t u a t i o n ,  ' W e  know that the s l i gh te s t  
d i f f e rence  i n  some of the i n i t i a l  condi t ions  o r  the environ- 
mental p rope r t i e s  w i l l  change a co in  from f a l l i n g  heads t o  
f a l l i n g  t a i l s .  Therefore,  i n  s i t u a t i o n s  l i k e  that, w e  

We 
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f a l l  back on random variables. We assume that w e  have a 
coin -- heads is 0, t a i l s  is  1 -- and we have a ce r t a in  
probabi l i ty  p 

The meaning of t h i s  i s  completely clouded. Nobody has 
t he  faintest idea how t o  do probabi l i ty  in some sa t i s fy ing  
way, unless  you do it i n  an axiomatic way. When you t r y  to 
m a k e  it sensible ,  you g e t  into the following d i f f i c u l t i e s :  
What is  meant by a coin that has a probabi l i ty  p of f a l l i n g  
heads? It means that you keep tossing t h i s  coin a large 
number of times, and you get various sequences. If you t o s s  

6 6 it 10 times, there  should be approximately p x 10 heads. 
But if you tos s  a coin 10 times, how do you know you're  
toss ing  f t  i n  the same way each time? After  the coin has 
h i t  the f l o o r  10 times, you don ' t  have the same f l o o r  o r  
the same coin. You're not performing the same experiment, 
which means that i f  you t r y  t o  set  up t h i s  concept of pro- 

6 

6 

b a b i l i t y  on a very common sense experimental basis, then 
you g e t  i n t o  complete paradoxy. Suppose that even a f te r  
you did it 10 times, you found 10 -1 heads. Should w e  
assume that the  coin is very heavi ly  loaded? Ei ther  i t ' s  
very heavi ly  loaded, o r  else I have a very unusual sequence 
from a f a i r  coin. How do I know? That's a higher proba- 
b i l i t y . ,  You j u s t  keep pyramiding these d i f f i c u l t i e s .  
Consequently, people recqgnize a l l  t h i s .  But l e t  Is start 
the whole thing over again from an axiomatic basis, exact ly  
the  same way that w e  do in geometry. We set  it up on an  
axiomatic basis and leave it t o  the r i s k  of the user  as 
t o  whether he bel ieves  that any theorem which is sens ib le  
f o r  a triangle that I draw on the blackboard is  sens ib le  f o r  
a t r f ang le  on the  surface of the ear th ,  e t c .  ' 

6 6 

The big problem i n  the use of probabi l i ty  is  not  

6 3  
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what you can do ax iomat ica l ly  and a n a l y t i c a l l y ,  but  whether 
the hy-pothetical s i t u a t i o n  has any correspondence with 
r e a l i t y .  Most of the time i t  d o e s n P t !  
c a t i o n s  of s t a t i s t i c s  are completely spur ious  and open t o  
many i n t e r p r e t a t i o n s .  
greatest poss ib le  ca re .  
company, you could e a s i l y  get  s t a t i s t i c s  t h a t  would prove 
conclusively that  smoking is  good f o r  you. 
Energy Commission, I s m  su re ,  has expe r t s  who could pro- 
duce testimony t o  show that f a l l o u t  is  good f o r  you. 
j u s t  p i ck  and choose very c a r e f u l l y ,  and you can prove 
everything by means of s t a t i s t i c s .  
remark of Disraeli,  who said that, t h e r e  a r e  three k inds  of 
l i es  -- l i es ,  damn l ies ,  and s t a t i s t i c s .  

Most of the a p p l i -  

You have t o  view t h e m  w i t h  the 
If you are working f o r  a c i g a r e t t e  

The Atomic 

You 

You remember the famous 

Consequently, I would l i k e  t o  warn you i n  advance 
that whenever you use p r o b a b i l i t y  theory,  y o u ' r e  t r ead ing  
on very dangerous ground. 
the whole process  i s  meaningful, You f i n d  people t a l k i n g  

You have t o  be v e r y  c a r e f u l  that 

very b l ind ly  about t h e  p r o b a b i l i t y  of war. T h i s  i s  a 
complete misuse of t h e  concept of p r o b a b i l i t y 9  e i the r  i n  
p r a c t i c a l  terms o r  i n  the axiorn,atic sense.  P r o b a b i l i t y  is  
j u s t  thrown around very loose ly .  

We w i l l  in t roduce s t o c h a s t i c  c o n t r o l  processes  from 
a pure ly  mathematical, axiomatic po in t  of view. Whether 
they  have any relevance t o  anything t h a t  goes on i n  the 
real world i s  another  mattere You are now forewarned as 
t o  the weaknesses and f l a b b i n e s s  of" p o s s i b l e  p r o b a b i l i t y  
theory .  
that you know how dangerous It i s  t o  apply mathematical 
techniques t o  engineering problems, T h i s  is why experience 
and i n t u i t i o n ,  when combined with i n t e l l i g e n c e ,  are very 

I hate t o  d i s f l l u s f o n  you, but  i t s s  necessary 
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useful. Unfortunately, most of the time we have a dichotomy -- 
intellfgence without experience, and experience without 
intelligence. Naturally, there's very little communication 
between the two. But as far as the engineering world is 
concernedo and certainly the eeonomic wokld and more 
difficult worlds outside of those, mathematical methods 
should be used with the greatest care and caution, and 
nobody should ever take too seriously the results of 
analytical calculations. 

One has to be very careful before he extrapolates 
from the m a n y  assumptions that go into writing equations 
to any realistic and complicated system, regardless of how 
many digital computers are there to testify as to the fact 
that these numbers were actually computed. The use of 
the digital computer is like the gun on the wall of the 
big game hunter, 
about shooting the rogue elephant, 1'11 show you the gun 
that did it. 

I1 He says, If you don't believe my story 
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Feedback Control Theory 

Today I want t o  t a u  about feedback control, s t a r t i ng  with deter-  

ministic control processes and going on t o  stochastic control. 

terday I warned you about the dangers, fall .acies,  and weaknesses of 

the calculus of var ia t ionso 

i n  computational schemes, usually we can only use it as a purely 

ma'thematical too lo  

Yes- 

Although we would l i k e  t o  make use of it 

The concept of feedback control i s  a very in te res t ing  one and 

a very fundamental oneo 

sc i en t i f i c  concept, because it cuts across the f i e lds  not only of 

engineering and econmics, but  a l so  the f i e lds  of biology, medicine 

and psychology. 

the unifying concepts of science, and when we get more in to  mathe- 
matical biology and look in to  the functioning of l i v ing  organisms, 

we're going to  find tha t  the feedback control concept, a l l i e d  w i t h  

t h i s  word homeostasis, namely the desire  of the organism t o  keep 
i tself  the way it was, a t  the status quo, 

@ding scient i f ic  principles,  

mathematical techniques designed t o  handle quite specif ic  problems 

i n  m e  f ie ld  prove t o  have much wider va l id i ty  and can handle prob- 

lems i n  other f i e l d s  which a re  s q e r f i c i a l l y  quite different ,  but  

abstract ly  and in t r in s i ca l ly  exactly the same mathematical problem. 

For those of you who a re  interested i n  biology, psychology and 

medicine, i t  should be pointed out t ha t  the ideas t h a t  w i l l  be dis- 

cussed i n  what follows have immediate application t o  these areas. 

And of" courseB as I mentioned a t  the beginning of the first lecture, 

i n  my opinion they're i n f in i t e ly  more important and interest ing but, 
fortunately, science i s  a matter of tas te .  

It i s  probably the most fundamental single 

More and more wetre going t o  f ind it as one of 

This i s  one of the 

It i s  very in te res t ing  t h a t  

Consider a systemB the state of which we specify by a vector p 
Under time, p goes in to  a new s t a t e  T(p) i f  i t ' s  uncon- at time to 

t ro l l ed  4 
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State S: p 4 p1 = ~ ( p )  

If w e  exert control, then a systemat s ta te  p under the influence of 

the control variable q goes into a state T(p,q). 

t h i s  have recently come into some prominence. 

quential machines. Logicians are fond of them. 

ta in  flurry of interest  i n  sequential machines - probably about 273 
papers written - and then the field w i l l  die down, because there &re 

no numbers attached t o  it. 

and see how accurate the number 273 is. 

two people in  logic have begun t o  realize that  these general systems 
can be put into abstract format. But as I say, the weakness of that 

Zbstmct f o m t  is they have not considered the numerical problem. 

Abstract versions of 

These are called se- 

There w i l l  be a cer- 

It would be interesting t o  make a count 
Just in  the last year or 

Consider a very simple one-dimensional case. Take a system S a t  

time n, where time is discrete, and l e t  the state be un (n = 0,1,2 ...). 
Assume that a t  a t i m e  n + 1, the state i s  a certain function of the pre- 

vious s ta te  and the control. 

U =g( un, vn) where vn is  the control variable. n + l  (1) 

Sup9ose the system is originally i n  the s ta te  C.  

one-dimensional. 

and as I say we can then avoid many of the sophisticated concepts of 
continuity, the question of existence, and of minimum and maximun 

Everything i s  now 
We can l e t  a l l  the varia3les be discrete if we wish, 

values, and SO forth. 

As usual we assume that  t h e  criterion function is  same function 

of the terminal state plus a s m  of the costs incurred a t  each stage. 

!Be cost incurred a t  each stage i s  a combination of some f’unction of 
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I EU -t v n + l  3 
U "* = c 

where : ~ e  start the system st s x t c  c 

I n  8 stcte b,  we ~ ' z n  say t h e t  a t  each stage we hnve a cost  cf deviation 
(ulr, - b)2 and l e t ' s  5.2y we have a, cost of control Av 1C 

that  the costs are zdditive, so o w  cr i tc r ion  function becomes 

If o w  ob2ectlve is t o  keep it 

~ e ' l l  assme 

?his i s =i tygical quadratic coa t ro l  process. It i s  zn in te res t inc  

o x  koeuse  I; can be solved expl ic i t ly  i n  several  d i f fe ren t  ways; we 

cvy  ":rive Ciime to come back t o  it later Let 's  t a l k  ?.bout the general 

czse of which t h i s  is a part icular  excmple, 

t o  minilnize the c r i te r ion  funct'on R over the choice of control v. 

I dor ' t  have t o  specify whether I ' m  usin&; feedback control o r  whether 

T ' K  operating sequentially or whether p want tn change a l l  the v ' s  

at, one tim; it doesn't meke any Ciffercnce. 

ministic p-ocess, 

TsiG differanee when we t a l k  &out stoc2iastsc 2nd adaptive processes. 

iierct w e  can s ~ y  

('23 thf2i: of it &s onc n-dimensional proSlern where we choose vo, T ; ~ ,  

U I  . L , t .2  - -  

c c s s  where 'we choose first voy then v 

'x.C t% dyrAcmic proi;."anmine, apgroach, we say t he  cr i te r ion  function 

Scpposc ox- problem i s  

Here we have a deter- 

I emphasize t h i s  point now, because it  w i l l  make 

I- t'e =re conzer:-.?? with a de tmnin is t ic  process; we 

. a . 
nt n*,- Vllcr tine cr we mil th i rk  of it as e scqzcntial pro- 

il - 1 
then v 2 ,  and so on. If We 

1' 

Min R = fN(c)  

[VI 
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Feedback Control Theory 4. 

i s  a function of the number of stages N and the i n i t i a l  state c and 

w e  get  i n  the usual way 

This is  a feedback control problem. 

gramming formulation of it. We have reduced the problem t o  a sequence 

of one-dimensional problems rather than one n-dimensional minimization 

problem. 
analytic technique; i n  most cases we have a superior computational 

qproach. 

That z c t w l l y  cuts down on the computational time. 

advantage of a l l  kinds of realistic constraints, r ea l i s t i c  functions, 

and w e  do not have t o  t a i l o r  them so tha t  they obey some par t icular  

analytic cr i ter ion.  

Equation (6) is the dynamic pro- 

The zdvantages of t h i s  are tha t  w e  very often have a superior 

W e  clon't have t o  let, Y be cont;Jlw1x; we can +&e vo = + 1. - 
We can thus take 

Stochastic Control Theory 

Let us return t o  the original problem (2), and ask what have w e  
assumed? 

state precisely; when w e  say i t ' s  c, w e  mean i t ' s  c; b) cause End ef fec t  

are exact if w e  know the  i n i t i a l  state a d  w e  know the i n i t i a l  control 

varizble; c)  the control i s  precise. 

eyactly and w e  a l so  know exactly what w i l l  happen when w e  exert a con- 

t r o l  vn. 
e m c t l y  what goes in to  the system; d) Finally, we have assumed tha t  the 

c r i te r ion  function is precise. 

system, none of these holds. We never 8re able t o  measure the state 

accurately, i t ' s  a matter of  percentage error;  w e  never can take account 

of a l l  the different  causes. 

We've t a c i t l y  assumed the following: z) w e  know the i n i t i a l  

We know the subsequent state 

I n  other words, we choose a value v, and w e  assme tha t ' s  

O f  course, in any actual  physical 

Most of the time we don't even know many 

7 3  
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many of them, and w e  don't know the e f fec t  of those we know precisely. 

Also, 

variable. You night want z rocket t o  burn up a t  ha l f  maxlnm ra te ;  

it my be burning at  half  maximum rate,  or it may not be burning a t  

half  maximm ra te  e 

never r ea l ly  know what happens when we choose B control 

We have ignorances i n  each one of these four areas. The standzrd 

way of gett ing around ignorance is  t o  assume tha t  we ccn replace an 

unknown effect  by random variables. 

perfect ly  permissible then t o  introduce a random variable and take 

averages. This i s  an assumption. I keep in s i s t i ng  t h a t  you have t o  
be very careful and mke up your mind whether you want t o  take t h i s  

very seriously. I say t h i s  because, unfortunately, i n  so much of the 

work t h a t ' s  done t h i s  i s  never mentioned. People assume that a l l  t h i s  

i s  on a completely rigorous bzsis -- not only rigorous mathematically, 

but rigorous sc ien t i f ica l ly .  
make sure that  the physical s i tuat ion is  a good f i t  t o  the axioms tha t  
you use mathematically. 
science. 

about t h i s  

And what we assume i s  t h a t  i t ' s  

Whereas, the major problem i s  always t o  

This is' pa r t  of the use of mathemetics i n  

You have t o  worry about t h i s .  Too many people do not worry 

Let's take the very simplest s i tuat ion.  Let's assume tha t  we're 

now considering stochastic control, t h a t  the state a t  time n + 1 is a 

function of the state a t  time n, the control a t  time n, and a random 
influence at time n. 

7 )  U O -  

Let's simplify existence and assume tha t  everything has been scaled 

$-own t o  the point where r a t  each stage is + 1 with probabili ty 

p, 1 - p 9  respectively. This i s  perhaps the simplest kind of random 
vcriablc and it i l l u s t r a t e s  a l l  the complexities very well. 

n I 

O u r  c r i -  
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Stcchastfc Control Theory 6. 

ter ion function i s  

We've assumed that w e  know what our c r i t e r ion  is; 

have random e f fec t s  i n  it too, Let's assume here 

our c r i t e r ion  may 

t h a t  it doesn ' t . 
The first  problem w e  face, interestingly enough, is w h a t  w e  mean 

by a control process when we have uncertainty. 

t o  the t r i c k  of probability. 

ignorance by knowledge. 

be. 

c i r c w e r ? t  t ha t  by introdwing 8 mdm varia3le which can be +I 
with probabili ty p, and -1 w i t h  probability 1-p. So instead of 

complete ignorance, w e  say w e ' l l  t r y  the one value or  the other, and 

on the average, w e  know what the values a re  going t o  be. 

There are two par t s  

The first p a r t  is t o  say t h a t  w e  replace 

W e  don't exactly know what un+l is  going t o  

If w e  know un and V the first par t  of the tr ick.  is tha t  we n' 

The second question is, given t h i s  si tuation, how do you evaluate 

the outcome? 

In  other words, we're going t o  use some average outcome, and we're 
going t o  evaluate the performance of the system i n  terms of the 

average outcome, 
t c  win every game o r  the team t o  w i n  every game, o r  a b a t t e r  t o  make 

a h i t  every t i m e  he goes t o  the plate, but  we do evaluate t h e i r  

performance i n  terms of ba t t ing  averages, team averages, e tc .  This 

standard technique is d i f f i c u l t  t o  justif 'y in  many caseso 

morning quarterbacks a ren ' t  interested i n  footba l l  coaches who say, 

well, my expected performance would have been excellent; we jus t  

had a few misfortunes, a f e w  touchdowns here and a few touchdowns 

there  

The second pa r t  of the t r i c k  i s  t o  use expected values. 

As w e  do i n  baseball, w e  don't expect the pitcher 

Monday 

If you're only 
surviving an H-bonib 

your probabili ty of 

about the remaining 

interested i n  doing something once, s w h  as 

attack, you're not interested i f  somebody says 

survival is 0.9, because you worry a l i t t l e  b i t  

0.1. I n  other words, one has t o  take this 
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application of probabili ty theories with a grain of s a l t  and make up 
your mind when you're interested i n  expected values and when you're 
not. I t D s  clear t h a t  if you're going t o  do the same thing over and 

over and Over again then the expected value means something; 

have some general theorem in  probabili ty theory that t e l l  you t h a t  
i f  the average value of a random variable is  p, over a long sequence 

of runs you're going t o  see approximately p of those values. 

again without worrying about whether one can use t h a t  i n  any par t icu lar  

si tuation, we're going t o  think i n  terms of expected values. 

have t o  because nobody knows any b e t t e r  way fo r  handling probability. 

O f  course, the expected values need not be ju s t  the first moment. 

It can be the expected value of some function of r . Thus, we can 

a l so  hslndle problems such as -0- what i s  the probabili ty tha t  rn 
exceeds a certain value? This i s  a l so  an expected value. 

an expected value of & f'unction of rno But, there is no way around 

dealing with expected values once you introduce probabili ty theory. 

you 

Once 

We 

n 

I t ' s  

So w e  agree t o  two things. We've introduced the idea of random 

influences and we're going t o  deal with expected values. 

l i f e ,  l e t ' s  say tha t  we're going t o  minimize 

To simplify 

This sounds l ike a sensible problem. 

not defined as yet, and thus i s  meaningless. This i s  the amusing 

point,  I n  the deterministic case I could s e t  down the function 

The point is, the problem i s  

R 

about feedback control. 

get in to  stochastic processes, you have t o  make the rules quite precise 

before you know what the problem is. 

e I want to  minimize it and not specify t h a t  I was ta lking n 
The problem is well defined. As soon as w e  
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Stochastic Control Theory 0. 

L e t  me point out two ways i n  which we can proceed i n  t h i s  case. 

To minhize  the expected value of the % over the v ' s  i s  not a precise 

gro3len. 

could think of.  The f irst  I'll c a l l  non-sequential. 

choose v 

Let me point out tk'o d i s t b c t  t39es of problems t h a t  we 
Here w e  would 

vl, . . . ahead of tl2.e; for  any such set of values, 
0' 

compute 

and then minimize over the v . I n  other words I say one way of 

carrying on a control process o f  t h i s  type, is  t o  say I ' m  going 

t o  pick my numbers vo, vl, . . . 
one of these choices I now compte the expected value of 

the r 's .  What I have l e f t  i s  a function of the v 's .  I now minimize 

i n  the usual way. 

i 

ahead of time. For each 

over 
2 Cm-1 

T I  

This i s  a meaningful engineering yocess .  It corresponds t o  

a s i tuat ion i n  vhich you kn~w tha t  the system i s  going t o  operate 

i n  a cer tain way, you know the i n i t i z l  state, but  you have no way 

of observing the system, once it gets s tar ted.  If you have no 

-day of oSserving the system, once i t  gets s+&rted, obviously, you 

cznnot u e  a sequential process. So this i s  a meaningful process, 

i n  those s i tuat ions i n  xhich you can obtain no information as t o  what 

the cc tua i  s t a t e  of t h i s  system i s ,  once you have s ta r ted  the control 

Groczss. 

Fortunately, i n  most czses, we cm ohsenre the state of the 

1' system. 

choose v observe ~ 2 ,  . . . . This i s  a sequential o r  feedback 

c m t r o l  process 

Tnen we proceed Fa tne fellowtng my: Choose vo, observe u 

1' 

Wnich one of these w i l l  yield a smaller velue of the minimum? 

Owiously, the l a t t e r  w i l l ,  because nosnsequential control  i s  a 

subclass of t h i s  ty-pe. You can always exert nonsequential control. 

i' g 
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I n  feedback control w e  have more infometion and w e  can expect t o  

do be t te r .  

game are, then, ( 9 )  i s  a meaningless problem, 

what inclination you're allowed a t  each stage. 

But, as I say:, unless I t e l l  you what the rules  of the 

I have t o  t e l l  you 

This brings i n  a very interest ing idea which w e ' l l  discuss later. 
That i s  the fac t  t ha t  as soon as you get t o  stochastic and adaptive 

processes, then the information pat tern becomes important. What in- 

formation do you have about a system a t  a par t icu lar  time? 

something which doesn't enter  a t  a l l  in to  the deterministic case, 

because you t a c i t l y  assume tha t  you know e,uactly what the behavior 

of the system i s  going t o  be. 

t h i s  means that stochastic and adaptive processes are  in f in i t e ly  more 

interesting. "here a re  many more variations.  I'll discuss some of 

them. 
feedback c ont ro  1, 

This i s  

From 8 mathematical point of view, 

We want now to  consider ( 9 ) .  If 1 now say minimize Over v, the 

I have a perfectly well defined process. 

sophistication of the problem i s  concerned, ( 9 )  is  a lower leve l  problem; 

it i s  a problem in  calculus. 

i s  a much more sophisticated problem because it i s  a problem involving 

the choice of n functions. We have t o  choose a policy. We say tha t  

5, what should v be as a function of u ? once you have observed 

u will automatically be a range of values now as a stochastic 

variable;  v w i l l  be a function. In  other words, i n  (10) we must 

make a choice of N pol ic ies .  

problem w e  have t o  choose a point i n  N dimensional space. 

although ( 9 )  is a much more elementary problem, (10) i s  a much eas ie r  

problem t o  tackle. 

sc ien t i f ica l ly .  There ' s  a moral attached t o  t h i s  : 
necessarily mean sc i en t i f i c  importance And very often, complexity 

and obscurity are  j u s t  smoke screens t o  disguise the f a c t  t ha t  there ' s  

very l i t t l e  there of sc ien t i f ic  or i n t e l l ec tua l  i n t e re s t .  

Notice tha t  as far as the 

We have t o  choose n-1 variables.  (10) 

1 1 

1 
1 

In  sol-Jing the feedback control 
However, 

And the eas ie r  problem i s  the more important 

complexity does not 

I' 3 
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L e t  us consider the feedback control pro3lem i n  more de t a i l .  We 

proceed i n  e m c t l y  the sane way as before. 

value Over a feedback control process of the expected value Over r 
degends on the i n i t i a l  value. 

We say, c lear ly  the ninhum 

It is  a function of the nmiber of stages and the i n i t i a l  s t a t e .  

us determine the corresponding recurrence relat ion.  

inmediate cost  of h( c,v ) . 
state g(c,v ,r ). 
randm variable, it w i l l  be i n  one of  two s t a t e s .  

the optimal continuation. 

continuatiom, of course. I n  t h i s  case the average value i s  Jus t  

L e t  
If w e  pick vo, we incur 

As a re su l t  of v we're going t o  be i n  a 
0 0 

Regardless of what s t a t e  we're in, since r i s  a 
0 0  0 

We're going t o  use 

We take the average value over the optimal 

r 1 

It requires a l i t t l e  b i t  of practtce t o  juggle the minimization 

and the expected value i n  the r ight  order; you have t o  think it out. 

fac t ,  you must read it backwards. F i r s t  I choose vo which mans I'm 
going t o  be i n  state g(c,vo,r ). Whatever state I ' m  i n  I'm going t o  

use an o 3 t i m l  policy from t ha t  Zoint on. 

new s t a t e  i s  going t o  be f of that .  I don't  know which one of these N-1 
I ' m  going t o  have, but I average over the p o s s i j i l i t i e s .  f i s  then my 

return.  I now juggle the cos t  of the i n i t i a l  

decision versus the cost  of the remaining decisions. You have t o  play 

;:iVn these things for  a while h f o r e  you get confidence, and then i t ' s  

very easy t o  interchange things and say, why don't  you take the average 

?ralue inside, e t c  a But we have t o  think of the process. A s  I pointed 

out yesterday, a cer ta in  amount of thought i s  necessary. 

gocd for  one, it shouldn't be over done, 

I n  

0 
So, the return frm any 

0 
It 's  an average return.  

This i s  
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but a l i t t l e  b i t  never hurts. 
c l a r i fy  things e 

Let's take a specific example which may 

Consider the simple l inear  s i tuat ion 

u = au + v n ,  (13) n+ l  n 

And suppose my problem was 

Then 

N - 1  2 
MinExp f [ ( %  - b)2 + A  1 vk]  = fN(c). 
Cvl r k=O k=O 
F.C e 

2 
(c-b) + xv: + p [ac+vo+l-b] + 

where we have assumed that the function is just another constant. 

For those of you who would like t o  do a l i t t l e  algebra 
and elementary calculus, l e t  me pose the following problem: 

Take the deterministic case first where 

.. - . -  

-I 
- 1  

I 
I 
I 
I 
I 
I 
I 
s 
1 
I 
1 
I 
1 
I 
I 

e 



Stochasttc Control Theory E. 

U = a u + v  n+l n n  (1.7) 

with 
k=O k=O 

Prove t h a t  f ( e )  i s  a quadratic function of c---in other words, it 
hes the form 

N 

f N ( C )  =a, + P N C  + ;rMc 2 ,  0 

Using the functional equation, derive recurrence relat ions fo r  aN, 
and show tha t  optimal control i s  linear, i.e. PI?' TN 

r 
u + €  v n = o n n  n o  

This problem i s  discussed i n  Applied Dynrmic Promarmning, referred 
t o  earlier. Do the same f o r  the stochastic case. 

through the  details of t h i s  you w i l l  have some feel  as t o  how these 
techniques can be used. 

If you work 

From the conceptual analytic point of view, the above approach 

gives us a uniform method for  the treatment of both deterministic 
an6 stochastic control processes. 
now no difference a t  a l l  between the two; the concept of an optimalpolicy 

i s  exactly the sane; each v = vk( c)  
what control do you exert i n  terns of .where you are? 

into stochastic control process, you w i l l  see tha t  we're talking i n  
terms of feeriback control., This is  the way the solution has t o  be. 

Notice t h a t  the  two techniques, the two zpproaches which were ident ical  
for d e t e m n f s t i c  processes, namely, e i ther  choose the control values 
a l l  a t  once i n i t i a l l y $  or choose them sequentially, are quite 

dlfferent  a t  the present time, and they represent quite different  

?kJsical s i tuat ions,  A s  I pointed obt, the 8 priori choice 

We see t h a t  conceptually there 's  

An optimal policy now is, k 
When w e  get 

% '  



Stochastic Control Theory 13 

i s  what's forced upon you when you have no way of determining what the 

actual  state of  t h i s  system i s  once you've proceeded with the control. 

On the other hand, the feedback control method depends upon the f a c t  

t ha t  you know the state of the system a t  each time. 

A very interest ing type of stochastic control process i s  one 
which we c a l l  interruptive control. 

system (17) , and suppose it really represents the behavior of a 
satellite. Assume t h a t  the communication l i i nk  breaks due t o  

interference a t  a cer ta in  time, 
variables. 
t o  occur wi th  a cer ta in  fixed probabili ty.  
system under such circumstances? We c a l l  t h i s  an interrupt ion of the 

control process, and you see what I mean when I t a l k  about the 

richness of stochastic control as  opposed t o  deterministic 
control, because now you can take a l l  the possible calculus of 

variations,  a l l  possible control theories, and systematically 

say, "Suppose I only know t h i s  with a cer ta in  probability. 
my information about this i s  l o s t  o r  destroyed or interrupted. 
Then what do I do?" Each one of these problems i s  completely 
meaningful as far as an engineering process i s  concerned. 
you who are further interested i n  stochastic control processes, I 

suggest tha t  you look a t  Adaptive Control Processes: A Guided Tour. 
There's a much more detai led discussion there, and many references. 

Suppose we're controll ing 

You don't get  a reading of the state 
And now suppose t h a t  you know a p r i o r i  t h a t  t h i s  is  going 

How do you control the 

Suppose 

Those of 
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Speaking i n  inprecise terms mainly 5ecause there a re  no precise 

terns,  an gdapti-$e process i s  a process in  which you have t o  learn 

ebout the system as you go along. W e  could r ea l ly  use the word learning 

p o c e s s ,  but  the psychologists have preempted that word. 

en adaptive process arise? 

control o r  the feedback process i s  one of the most fundamental processes 

across the sc i en t i f i c  board. More and more in the f i e l d s  of biology 

and psychology, fo r  example, people rea l ize  t h a t  there are all sor t s  

of processes t h a t  formerly have been looked a t  i n  a rather  mystical 

way but are j u s t  very simple examples of the feedback concept. 

Learning, fo r  example, i s  one of these. 

How does 

I mentioned previously that feedback 

Let's consider the following quite precfse process. Suppose I 

give you the s tocast ic  process 
F 

u = c  0 

with rn = + 1 with probzbili ty p and 1-p, respectively. - 

I can s e t  up the c r i t e r ion  function, and after I 've  done a l l  t h a t  I 

s ~ y  that ,  incidentally,  I don't know the value of p .  I give you 

( 2 0 ) ,  a very precise fornulation, and then I say, as a postscr ipt :  

p.s.,  9 i s  not known. Now, of course, a strong tendency i s  t o  say, 
I don't admit tha t  8s a mathematical problem. 

with problems of t h a t  d i f f icu l ty .  
i n  engineering, i n  economics, i n  biology, t h i s  is  the s i tua t ion  you 

fzce. 

s i tua t ion  you face. 

a s  we 60 along. You have a perfect ly  precise formulation a '  la 

clzssicalmathematics, and then it turns out t h a t  you don't  know 

cer ta in  parmeters  or cer ta in  functions. 

I j u s t  refuse t o  deal 

But unfortunately i n  many applications, 

As a matter of fact ,  t h i s  i s  a v e r y  simplified version of the 

I want t o  talk about the more r e a l i s t i c  aspects 

6 3  
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t' I f  you're a mathematician, you can ju s t  say improperly posed," 

and you throw it away. If you're an engineer who has t o  construct 

a s a t e l l i t e  or a spacecraft which, l e t ' s  say, has t o  s t ee r  through 

an unknown atmosphere or w i l l  go out in to  regions of space where 

one doesn't know cer ta in  constants as w e l l  as one would l ike  t o  know 

them, then you're faced with t h i s  problem; somebody says, I want t o  

go t o  Mars o r  Venus; i t ' s  not for you t o  question why; j u s t  accept 

it. You look a t  the astronomical tables  and it turns out t ha t  cer- 

t a in  values of the parameters a ren ' t  know. What do you do? 

You would say the following: i f  I ' m  going from, say, Terra t o  

Mars and i f  I know how t o  get out j u s t  so far, of course I have many 

d i f fe ren t  paths. Let's assume tha t  when I ' m  out i n  space I have 

instruments aboard my spacecraft which w i l l  enable me t o  take measure- 

ments much more accurately out there than from here, so tha t  I can 

determine those unknown parameters. In  other words, I have a con- 

t r o l  process i n  which I ' m  going t o  have t o  steer the ship. 
a t  cer ta in  stages I have inputs of new data.1 m u s t  learn and do a t  
the same time. This, of course, i s  a typical  s i tuat ion in .1 i fe .  

A l s o  

The second example is  a person who i s  in  charge of an A i r  Force 

depot., Suppose you had 

You cannot follow the obvious policy of saying l e t ' s  order several 

thousand of these and several  million of these, e t c ,  

expensive, and 5 or 10 years l a t e r ,  someone i s  going t o  look over the 

s i tuat ion when you have 954 of t h i s  l e f t  over and 85% of that ,  and 
say, t h i s  5s too expensive, 

you order? The number of spare par t s  should depend upon the demand. 

If you're i n  a well established industry, you have a nice dis t r ibu-  

t ion of demand which says expected demand i s  so large and there i s  

an expected probabili ty of lower demands or excessive demands. 

exercise i n  probabili ty theory i s  to  determine how many you should 
order so as t o  minimize your expected cos t ,  

t o  store spare par ts  fo r  a new plane. 

That's ra ther  

The question is, how many spare par t s  do 

The 
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If t h i s  were a multi-stage process, one could use dynamic program- 

ming and get in to  what's cal led inventory problems. 

Suppose you have a new i t e m .  You don't  have any previous de- 

mand curve. 

what happens over the first month or the first year and on the ba- 

sis of that improve your estimate of the demnd curve. 

going i n  t h a t  way. 

i n  industry. 

constantly i n  a new si tuat ion where you don't have experience t o  guide 

you as t o  what your probabili ty distributions are, but  you have t o  

learn as you go along. 

You have t o  stock a certain number of par ts ,  observe 

You keep on 

This again is, of course, a typ ica l  si tuaion 

As technology is  changing tremendously rapidly, you're 

Another example of t h i s  is i n  connection with our missiles. 

Missiles have the peculiar property, because of t h e i r  electronic 

gear, of f a l l i n g  in to  disrepair  while just s i t t i n g  there doing 

nothing. 

from time t o  t i m e .  Ideally, i f  you want t o  make sure tha t  the thing 

is  working, you ought t o  look a t  it all the time. While you're 

looking a t  it, it is operative and workmen w i l l  demand a t  least 

double pay i f  there i s  the probability t h a t  the thing w i l l  be f i r ed  

while theyYre  watching it. 
l ike  that ,  you have t o  determine what your inspection policy should 

be, 3rl the basis  of s t a r t i ng  t o  inspect it and seeing what happens 

as you go along. 

probabili ty is t h a t  something goes wrong. 

This means t h a t  people have t o  go around and look a t  them 

So, i f  you're turning out new devices 

There is  no well extablished curve of what the 

In  a period of rapid acceleration of technology where we're 

using new devices a l l  the time, the r ea l ly  s ignif icant  processes 

are the ada?tive processes. 

mt i c i ans ,  and the engineers, and the people i n  economics and h is -  

tory,  and t h e  s c i en t i s t s  and the people i n  biology have f ina l ly  

It's ra ther  interest ing that the mathe- 
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accepted the f ac t  t ha t  the basic problem has always been t h i s .  

r ea l ly  have been i n  the s i tuat ion of the people i n  "The EmperorPs 

New Clothes." For hundreds and hundreds of years, these people have 

always assumed, first of al l ,  t ha t  the systems were perfect ly  deter- 

ministic.  Then f inal ly ,  with much bitterness, they've brought i n  

stochastic systems, and f ina l ly  they're beginning t o  admit tha t  the 

r e a l  problems are  adaptive. The r e a l  s i tua t ion  i s  t h a t  you never 

know as much as you want t o  know about a complex system, but t ha t  

you learn about it i n  the process of using it. 

W e  

The f l ex ib i l i t y  of the feedback concept i s  absolutely essent ia l .  

You say tha t  you keep yourself i n  readiness t o  change; what you're going 

t o  do i s  dependent on what happens. I n  the world of biology, you can c i t e  

many examples of organisms which survive because they do have the 

feedback potent ia l .  

r i g id  
ing about those Ipnes, you know, i t ' s  important t o  give up the 

phrase about the dinosaurs being a very unadaptable group. One should 

remember the dinosaurs existed for  about a hundred million years; 

we've existed fo r  about 5,000,000 years a t  most, and cer ta inly maybe 

i n  only conscious form f o r  about 15,000 years.. So before w e  sneer 

a t  the dinosaur for  not being able t o  adapt w e  ought t o  a t  l ea s t  

get  past  the next $0 years. 

Other organisms perish because t h e i r  pol ic ies  were so 

that they had no way of adapting t o  new circumstances. Talk- 

Another very interest ing example of an adpative process occurs i n  
the f i e l d  of medical diagnosis. 

a doctor; you say, I don't f e e l  w e l l .  He performs a certair, nmber 
of obvious tes ts ,  gets a cer ta in  m b e r  of reactions, and makes 8 

cer ta in  nmber of prescriptions; they give you a shot of t h i s  o r  a shot 

of t h a t ,  or some aspir in ,  e t c "  Then he waits and sees. A t  the end 

of a day or  'two, or  when you complain next, he looks a t  the s i tuat ion 
again. And so one 

Here i s  the s i tuat ion:  you go t o  
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Adaptive Processes 18. 

One fur ther  exmqle of an adaptive process is the use of new won- 

der drugse 

The problem t h a t  a doctor has is: 
knows w i l l  work with e cer tain probebilitjj, or something which i s  

re la t ive ly  untested? 

The experlhental implementation of new drugs is a very interest ing 

process, which is an adaptive process. 

Sqqose  you hwe a cirug which has never been tes ted before. 

Should he prescribe something he 

It may not work a t  all - it may work very well. 

b 

As a matter of fac t ,  t h i s  problem was f i r s t  thought of i n  about 

!RE person who worked on it was an expert i n  biological med- 
He real ized 

1932. 
i c a l  s t a t i s t i c s  and he discovered sequential analysis.  

that i f  you're going t o  try B new drug rcther  than the standard, 

prosaic technique i n  which you take a hundred cases here and a 

hundred cases there, what you ought t o  do i s  &take ten cases or twen- 

t y  cases, one with fne new drug, one with the control, and depending 

upon what hap?ens, change the size as you go along. 

sequential analysis and then he decided tha t  the mathematics were 
too comlex so he devised Monte Carlo techniques, i n  order t o  tes t  

this. 

head of h i s  t i m e  and so h i s  work went completely unnoticed. 

He  discovered 

"his w a s  i n  1932. Unfortunately, he was 14 or 15 years a- 

I t ' s  rather  interest ing t o  see tha t  many of the Sasic problems 
The challenge is, i f  w e  of' s c i en t i f i c  l i fe  e re  adaptive processes. 

f a x  thet much uncertainty, do we h w e  techniques f o r  handling it? 

I yointed out previously tha t  prcSahility theory w a s  a very in&enious 
way of c i r c m e n t i n g  the fact that if rre're i n  s t a t e  u 

apply control v 

s3Cles-t  exzDple i s  t o  +a];e a coin ar,d toss it. 
GoSr,i; tc f e l l  heads o r  t a i l s :  xe h ~ o x  i-t defznitely vi11 3 e  one or 

the other, assuming the coin i s  thin encugh, but ve can ' t  predict .  

SO we get eround t h i s  fm6arnest21 di2f ic l ; l ty  3;. jntroducing randm 

vcriablcs 

and i f  w e  n 
ve don't know w k t  thz s t a t e  i s  going t o  be. "he 

n 
We 6on't  know i f  i t ' s  

s'7 
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I ' d  like t o  p o h t  out for those of you who have had only t rad i -  

t i ona l  courses i n  probabili ty theory, with very l i t t l e  discussion 

of the philosophical and conceptional d i f f i cu l t i e s ,  t ha t  the bes t  

book on the suQject written t o  date and probably the bes t  book tha t  

ever w i l l  be writ ten was writ ten by Laplace, h i s  Essay on Probabili ty 

Theoq., The book con- 

ta ins  lectures tha t  he gave i n  1799 i n  Par i s  with the constraint  

t ha t  these were to  be public lectures.  No mathematical symbols 

were t o  be used. 

Gaussain distribution without any symbols a t  a l l .  

p i  he never uses the symbol for  f i  he Says the r a t i o  of the c i r -  

cumference t o  the diameter of a c i r c l e .  But he mentioned and d is -  

cussed such problems as how many peoyle should be on a jury and a l l  
s o r t s  of problems which people think are Just  modern operations re- 

search. "hey forget t h a t  there was the same in t e re s t  in  the appl i -  

An English t ranslat ion is  published by Dover. 

I t ' s  very interest ing t o  see him t a l k  about the 

When he mentions 

cation of mathematics t o  the problems of the world a t  the beginning 

of the 19th century and the end of the 18th. 

why t h i s  didn' t  f lourish i s  because people realized very precisely 

then tha t  mathematics was quite limited. 

before you apply it t o  economic, social ,  o r  p o l i t i c a l  problems. I 

think we're beginning t o  f ind tha t  out again today. 

excellent book, completely readable, very charming. 

And one of the reasons 

One has t o  be very careful  

But t h i s  iz an  
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Adaptive Control 

The concepts of adaptive control  can best  be brought 
out  by making use of the problems that w e  have discussed 
e a r l i e r  i n  s tochas t ic  control  theory, where c e r t a i n  of the 
quant i t ies  which were well known before now are considered 
t o  be less we l l  known o r  e n t i r e l y  unknown. This requires  
the introduction of new techniques of analysis .  

Consider the simple l i n e a r  problem discussed pre- 
viously: 

Uk+l + auk + vk + rkJ uo = c .  

The c r i t e r i o n  funct ion we take t o  be a simple quadrat ic ,  
and the problem i s  

where the  first term represents  the cost  of deviat ion 
from the  des i red  s t a t e  b, and the second term is  the cost  
of control .  
w i t h  probabi l i ty  p and 1-p, respec t ive lye  The problem is  
iden t i ca l  t o  tha t  posed i n  s tochas t ic  control  theory w i t h  
the  following exception: 

r a t  the j - t h  stage is  ei ther  +1 o r  -1, 

p i s  unknown! 

I n  order t o  remove the ambiguity introduced by t ry ing  
t o  f i n d  E$pS if r 5s unknown, and hence posing an i n t r i n -  
s i c a l l y  meaningless problem, w e  must now deal w i t h  the  
probabi l i ty  of a probabi l i ty ,  a technique which i s  common 
i n  the f i e l d  of s t a t i s t i c s .  

Let us  assume: 
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Adaptive Control 2. 

1. That p has itself an - a priori probability dis- 
tribution dG(p), 

2. That we will revise this a priori distribution - 
function on the basis of outcome as the process unfolds by, 
for example, the Baye's estimation, which is the simplest 
method, 

3. 
actual probability. 

We will act as if the expected probability is the 

In processes of this type the information pattern plays 
an important role. In addition, we must consider an en- 
larged concept of the state of the system. We now must 
consider a) the physical state c, b) the sequence of values 
of ri, i.e., [I, 1, -1, -1, -1, ...]. 
is not important in this case. But it is essential to 
observe how many +Its and how many -1's occur, say rn+l's 
and n-1%. We will now interpret the state in the generalized 
sense: 

In face, the order 

( 3 )  P = P(C, m, n). 

A typical estimate of the probability of r would then be 

By the &ye's estimation formula, 

Hence the expected probability, 
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'I This changes an a priori estimate to an a posteriori esti- 
mate, Of course, this must converge to the true probability 
f o r  p=l. 

The functional equations for problem (1) with criterion 
function (2) follow directly by means of the methods dis- 
cussed earlier 

- 
F,C. 

I 
I 
1 And it follows that 

2 2 
( 8 )  fN(c, n, m) = Min [(c-b) + Avo + 

vO 
(ac+vo+l, m+l, n) + (1-p .)fN l(ac+vo-l, m, n+l)]. PmnfN-l m n -  I 

Among these higher level control processes, there is 
Starting at the lowest level a hierarchy of uncertainty. 

of uncertafnty we have: 

probability, 
processes; 

2. Problems in which the uncertainty has an unknown 
probability, but the probability has a known distribution 
fun@ t ion; and 

3 .  Problems in which the uncertainty has an unknown 
probability with an unknown distribution function, but 
the distribution function belongs to a family of functions 

1. Problems in which the uncertainty has a known 
These we have called stochastic control 

characterized by a fixed but unknown parameter, itself pos- 

1 
1 
1 
1 
I 
1 
1 

sessing a distribution function, e.g. 
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. 
4. 

Here dG(p) represents the unknown distribution function of 
p, and the probability distribution function of a a n d p  
may be another function dH(cCsp). 

Analagous to the hierarchy referred to above is the 
level of intelligence of so-called intelligent digital 
computers, provided one defines the level of intelligence 
as the level of ability to make decisions. At the present 
state of the art, our digital computers are at Level 0, 
i.e., they can handle only strictly deterministic processes. 
From a state p they obtain, by a simple transformation, 
state pl=T(p), then p2=T(p1) = T (p)> etc., no more than 
the simple iteration processes referred to at the beginning 
of this lecture series. The next level, Level 1, is that 
of stochastic processes; Level 2 is occupied by simple 
adaptive processes; anc? Level 3 contains the complicated 
learning processes outlined above. There is much doubt 
that we can ever make computers that will achieve the 
higher levels. To do SO, we would have to understand com- 
pletely the process of human thought. 

2 

Concluding Remarks 

Dynamic programming is a method of handling multi- 
stage decision processes. To make use of the techniques, 
one must be able to convert problems which traditionally 
have been handled by classical methods, or be able to 
recognize among the large class of classically unmanageable 
psoblems those problems that can be interpreted as multi- 
stage decision processes. In most mathematical problems, 
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one doesn't know &priori which is the proper mathematical 
method. 

For example, the simple problem of finding the solution of 

(10) ut' - u = 0, u(0) = 1 3  u'(0) = 0 

is entirely equivalent to 

1 
(11) Min I (ut2-u2)dt. 

u(O)=l 0 

The latter case is easily interpreted as a multi-stage 
decision prqcess 

Another simple example is 

N t x ~ = a  
(12) Max xi over 

i=1 i= 

which, when properly interpreted, leads to the functional 
equation 

which is solved by choosing % to maximize (13), then X N - ~ ,  
etc. 

The concept of a state plays an important role in the 
theory. By means of a transfornation T, the state p +T(p), 
and then control q is easily conceived as a choice of 
transformation, i.e., the controlled transformation is 
p +T(p, q). The criterion function usually is entirely 
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Concl ding Remarks 6. 

arbitrary, and can be chosen for convenience. The central 
question here, as in all of mathematical physics, is whether 
to choose, to represent some physical situation, a set of 
complicated equations and then solve by means of some 
approximate methods, or to represent the system approxi- 
mately and solve the corresponding equations exactly. 
In control theory we approximate a complicated system by 
simple models and solve these in the best possible way. 
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ELLIPTIC MOTION 
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E l l i p t i c  Motion 

Chapter One: Introduction to the Mechanics of Celest ia l  Bodies. 

1.1 Newton' s Law of Gravitation. 

Celestial  mechanics is, i n  the main, a branch of Newtonian mechanics, 

and the flundamental l a w  i s  Newton's L a w  of gravitation. It i s  t rue tha t  

t h i s  l a w  may not cover every contingency i n  cosmogony, but i t s  inadequacies 

i n  ce l e s t i a l  mechanics are s m d l  indeed. Also, i n  cases where the relevant 

arguments of general r e l a t i v i t y  have achieved expl ic i ty  forms, the resul t ing 

arguments of general r e l a t i v i t y  have achieved exp l i c i t  forms, the resul t ing 

modifications t o  motion governed by Newton's l a w s  have been deal t  with by 

established perturbation theories of ce l e s t i a l  mechanics. ( 5 )  

Newton's l a w  states that :  "any two pa r t i c l e s  a t t r a c t  each other with 

a force tha t  i s  proportional t o  the product of t h e i r  masses and inversely 

proportional t o  the square of  the distance between them." Let the pa r t i c l e s  

ave masses IT and 5, md p0sit.io-n- vect.ors s1 and 2, respectively. Then 

the force exerted by m2 on 5 can be writ ten 

( I n  these notes a vector i s  written with a l i n e  underneath. 

i s  writ ten with a "cap" above it, i.e.,  r, and I 
f o r  the modulus of - r. 

elementary vector algebra and calculus; i f  not, see ( 2 ) .  k i s  often 

wri t ten as "G" ,  and the value i n  c.g.s. un i t s  i s  6.67 . 10 

value would not be accurate enough for  calculation, and normally special  

un i t s  must be chosen so that the constant i s  known much more accurately. 

A uni t  vector 
A 1 ,  or simply "r" stand 

It i s  assumed tha t  the reader i s  acquainted with 

2 

-a . But t h i s  
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r 9 -no . , m  a t r  -1, r, "1, m p  n Consider a system of masses 

They w i l l  exert  a t o t a l  force on a mass m a t  r of amount - 
n ._ 

- k m  2 p i ( r  - -1 r .> /  I - -1 I 3 
L = I  

The pa r t i c l e  m w i l l  experience some force wherever it is, and the n 

bodies are said t o  s e t  up a "f ie ld  of force." The strength of a f i e l d  

of force a t  a point r i s  the force exerted on a par t ic le  of un i t  mass 

placed a t  - r. 

u n i t  mass." The n bodies produce, therefore, a f i e l d  of force 

- 
Str ic t ly ,  the word "force" i n  t h i s  context means "force per 

1L 

r - r .  I 
-1 

1 mi(; - I - - - k  (1.1.1) 

is I 
The three components of force i n  (1.1.1) can be derived from the 

gradient of the "force function" 

U = k  x m i /  I - r .  I 
-1 

(1.1.2) 

For inst.ance, the x-component, of t.he gradient. of U (or  gra.dU, or VU) 

i s  ~ I J /  ax .  Since 

1 r - r 1 = (x-x.)  2 + (y-yi) 2 + (z-zi) 2 4 2  
- -i 1 , 

and au/ax = - (x-xi) (x-xi) 2 + (y-yi) 2 + (Z--Zi) 2 . - 3 / 2  

The force function i s  the negative of the work t h a t  would be done i n  

assembling the system of n bodies from a s t a t e  of i n f in i t e  diffusion. 

As the words are  normaJ-ly used, it i s  minus the potential;  but t h i s  con- 

vention i s  not universal, and I sha l l  use only force functions here. 
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E l l i p t i c  Motion. 1.1 3. 

The t rans i t ion  from par t ic les  to so l id  bodies is  accomplished by 

integration. Consider the force function of a uniform, th in  spherical 

she l l  at a point 0 outside the shell. L e t  the sha l l  have center C, radius 

a, thickness da, and density p; and l e t  o c  = r. If P i s  a point on the 

shell ,  l e t  the angle OCP = 8. Divide the she l l  in to  th in  rings perpen- 

dicular t o  OC and defined by 0 l y i n g  within the limits 8 and 8 + d8. 

The radius of a r ing i s  asinQ, 

and i t s  m a s s  i s  

p 2 f a  sin 8 a dQ da. 

Any e l e M  of the r ing i s  a t  

the distance 

from 0, so tha t  the force function 

of the ring a t  0 i s  

2 2 2 2  -1/2 k 92 ra da sin@ d0 (r + a - 2arcosQ) , 
and the t o t a l  force function due t o  the she l l  is  

2 -1/2 U = k 2 p2 r a  2 da (" sinQdQ (r + a2 - 2arcosQ) 9 

Jo 

where the square ioo t  must always be posit ive.  This can be integrated 

37 at once t o  give 
2 2  -1 (r + a - 2a,rcos8) U = z k  dm [ra - 

2 
= k dm/r, 

2 where dm = ' f r a  p da i s  the mass of the shel l .  This me- that ,  so far 

as 0 i s  ccmcerned, the she l l  could just  as well have a l l  i ts  mass concen- 
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t r a t ed  a t  C.  

since the r e su l t  i s  not affected by integration over a, and it applies 

i n  par t icular  t o  any sol id  body that  i s  constructed i n  concentric spherical 

shel ls ,  provided w e  are outside it. 

This must a l so  apply to  a she l l  of f i n i t e  thickness, 

If,  therefore, we have a system of n bodies, each having spherical 

symmetry, then they can be considered as pa r t i c l e s  generating a force 

function (1.1.2), provided they do not approach too close t o  each other.  

The m a s s  of each body i s  considered t o  be concentrated at i t s  center of 

gravity, and the coordinates of a body are the coordinates of i t s  center 

of gravity. 

Fortunately, i n  most  problems of ce l e s t i a l  mechanics the bodies can 

be assumed t o  be spheres. I n  the first place they are, i n  fact ,  nearly 

spherical, and i n  the second place the distances between the bodies are 

usually large compared wi .22~  the dimeriaions of the bodies 'demselves. 

I n  the case of the motion of an a r t i f i c i a l  s a t e l l i t e  the l a t t e r  condition 

does not hold, and the oblateness of the Earth actual ly  causes major per- 

turbations i n  the motion. 

Outside a gravitating body the force function must sa t i s fy  Laplace's 

equation, 

(This can be proved by dif'ferentiating equation (1.1.2); the summation 

i s  replaced by  an integration.)  It transpires  t ha t  the force function 

of the body can normaJly be expanded i n  a power ser ies  i n  l/r, where 

, '  
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r:is the distance f'rom i t s  center of mass; the coefficients are called 

spherical harmonics. If, as i s  often the case, the body has symmetry 

about an axis, the force function can be expressed as 

J P - ...), m2 ' -  1 - (1 1 -2 J2p2 - 3 3 3 -.. n 
r 

.I. I 

where the P. are Legendre polynomials (functions of the l a t i t ude )  and 

the J. are  constants; i f  the body is  nearly spherical, the l a t t e r  becomes 

small quite rapidly. Now it would be possible t o  f ind  the force flrnction 

1 

1 

of such a body by integration, i f  we knew precisely how it w a s  put 

together. Fail ing t h i s  knowledge, it i s  s t i l l  poss.ible t o  w r i t e  down i t s  

force function direct ly ,  so far  as all the variable quant i t ies  are  con- 

cerned. 

drag, can be constructed using the force f'unction ( 1 . 1 . 3 ) .  

The theory of the motion of an a r t i f i c i a l  s a t e l l i t e ,  without 

Then, l a t e r ,  

observations may furnish the values of the Ji. A lack of knowledge 

about the insides of a body is therefore 113 great hardship whe:: i t s  

force function is  required. (For more detai ls ,  see R e f .  2, Chapter 4 . )  

1.2 Newton's Laws of Motion. 

We are  concerned with Newtonian mechanics, the basic assumptions 

of which are contained i n  Newton's l a w s  of motion. These are: 

1. Every par t ic le  continues i n  a s t a t e  of r e s t  or uniform motion i n  

a s t ra ight  l i n e  unless it is  compelled by some e x t e r n d  force t o  

change tha t  s ta te .  

1 0 2  
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2. 

portional t o  the  force applied t o  the  par t ic le  and takes place i n  

the  same direction as t h a t  force. 

3. 

oppositely directed. 

The r a t e  of change of t h e  l i nea r  momentum of a par t ic le  i s  pro- 

The mutual actions of any two bodies a re  always equal and 

A man who observes the motion of surrounding bodies that a re  not 

acted on by forces, and notes t h a t  they a re  not accelerated i s  en t i t l ed  

t o  f e e l  t ha t ,  fo r  prac t ica l  purposes, he i s  a t  r e s t  with respect t o  

some i n e r t i a l  system of reference. 

accelerations, then he i s  not (although he may invent forces such as 

centrifugal or Coriolis forces, t o  preserve the  i l l u s ion ) .  

no point fixed on t h e  surface of t he  Earth could be the origin of an 

i n e r t i a l  system, although some suff ic ient ly  parochial experiments 

might give that impression. Motion observed ( s i c )  by a non-rotating 

man a t  the  center of the  Earth would s t i l l  show acceleration because 

of t h e  action of t he  Sun, Moon, e tc . ,  on the  Earth. Similarly, motion 

observed f romthe  center of mass of t he  solar system should be affected 

by nearby s ta rs ,  and the  f i e l d  of t he  galaxy ( t o  say nothing about 

nearby galaxies): 

experiment t o  detect such effects, so t h a t  no purpose i s  served by 

considering acceleration w i t h  respect t o  t h e  center of t h e  galaxy, 

and so on. So we sha l l  not worry about t he  prac t ica l  d i f f i c u l t i e s  of 

choosing an i n e r t i a l  reference system, and we a r e  cer ta inly not con- 

cerned here with the  thornier  d i f f icu l t ies  a s  t o  whether such a system 

But if these bodies have any 

Certainly, 

this i s  t rue  i n  principle; but there  i s  no known 

103 
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can ex is t  a t  a l l .  

Newtonian mechanics, there  exis ts  an i n e r t i a l  system with respect t o  

which t h e  equations of motion can be wri t ten down; but no special  

assumption must be made about the whereabouts of t he  or igin.  

t h e  equations of motion have been s e t  up, algebra w i l l  enable t h e  

or igin t o  be t ransferred t o  t h i s  place or t h a t  

some terms i n  the  equations may r e su l t  i n  t h e i r  being rejected on 

account of t h e i r  smallness. 

down without any assumptions being made about t h e  origin, or t h e  

r e l a t ive  importance of different  terms. 

We adopt t h e  a t t i t u d e  that, given any problem i n  

Once 

A l s o ,  inspection of 

But t he  or ig ina l  equations must be wri t ten 

The measurement of 'luniform motion" requires t h e  use of a ' l u n i -  

formly flowing" t i m e .  

t h e  ro ta t ion  of t h e  Earth) threw up accelerations of t h e  Moon and 

planets  tha t  could not be explained by Newtonian mechanics, but which 

could resu l t  from non-uniform flowing of Universal Time. 

time has therefore been invented; th i s  i s  Ephemeris Time. I t s  r e l a t ion  

with Universal Time i s  given i n  the  almanacs. 

The use of Universal Time (which i s  based on 

A sui table  

The second l a w  can only be applied t o  motion observed with respect 

t o  an i n e r t i a l  reference system. If a p a r t i c l e  of mass m is  a t  r 

and t h e  resul tant  of t h e  forces  acting on t h e  p a r t i c l e  i s  E, then 

- 

E = % ( %  .) 
Two important formulas follow from t h i s .  F i r s t l y ,  

d r  r s  = d rxm- - - a t ( -  a t  ,) 

104 
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o r  "the moment of t he  external forces i s  equal t o  t h e  r a t e  of change of 

t he  angular momentum11. 

U t h a t  does not contain t h e  t i m e  expl ic i t ly ,  and i f  m i s  constant, 

Then, i f  F i s  t h e  gradient of a force function - 

(For, d i f fe ren t ia t ing  (1.2,3) with respect t o  t h e  t i m e ,  we have t h e  

sca la r  product of dddf  and ( l o 2 . 1 ) . )  This i s  t h e  energy in tegra l .  

The t h i r d  l a w  i s  obeyed by Newton's L a w  of gravitation, and i s  

needed i n  a derivation of this law from Kepler's L a w s  of planetary 

motion (quoted i n  Section 2 0 4 ) e  

NeWton?s laws apply d i rec t ly  t o  t h e  motion of par t ic les .  

body of f i n i t e  extent i s  acted on by a system of forces,  then t h e  

motion of i t s  center of mass can be found by sh i f t i ng  the forces  

pa ra l l e l  t o  themselves so that thef r  l i nes  of act ion pass through t h e  

center of mass. The motion about t h e  center of mass i s  considered, 

basical ly ,  through equasion (l02,2); subjects such as precession or 

physical l ib ra t ion  f a l l  under t h i s  heading; but they w i l l  not be con- 

sidered here. 

If a 

1.3 Equations of Motion. 

Consider t he  motion of n par t ic les  with masses "1, 9' *", m n' 

with respect t o  an i n e r t i a l  P2' * * J  Pn ,  which have posit ion vectors 

reference system. The equation of motion of m i s  i 

1 0  3 
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- I . A prime stands 

Adding t h e  equations f o r  
J where pij = I i 

t o  the  t i m e .  

Y -  

f o r  different ia t ion with respect 

a l l  the  par t ic les ,  t h e  forces 

cancel (from the  algebra, or from Newton's t h i r d  l a w )  leaving 

n 

(1.3.2) 

But pipi i s  t h e  posit ion vector of t h e  center of mass of t h e  system, 

and t h i s  i s  not accelerated w i t h  respect t o  t h e  or iginal  i n e r t i a l  

system; therefore t h e  center of mass could be t h e  or igin of an i n e r t i a l  

reference system. 

Multiply (1.3.1) vectorially by r .x ,  and add a l l  n equations. The 
-1 

r igh t  hand sides again cancel, leaving 

mir.m! = h o r  1-1 -1 - 1-1 -1 ( 1 . 3 . 3 )  

where h i s  a constant vector. The plane through t h e  center of mass of - 
t h e  system and perpendicular t o  h i s  constant throughout t he  motion, - 
and i s  called the  "invariable plane" of the  s y s t e m .  

The equations (1.3.1) can be wri t ten i n  t h e  form 

rn& = diu, 

where, ifPi has components ( t i 7  7 i 7  ( i ' 7  vi has components 

n 
U = "'2: ,I rn; me 

L < J = l  p;j 
We therefore have the  energy integral  f o r  t he  whole system, 

(1.3.5) 



El l ip t i c  Motion. 1.3 

h p 1 J - m i ~ 2  - u = constant. 

10. 

( 1 . 3 4  
I 
i= I 

But no integral  can be written down f o r  an i n d i v i d u a l  member of the 

system. 

Suppose that one body, m is considered t o  be dominant, e i ther  

because of i t s  re la t ive ly  great mass, or because t h e  motion i n  which 
n' 

we are  interested takes place very close t o  it. 

of motion of m f romthat  of mi ( a f t e r  dividing by mn and mi, re- 

spectively) we f i n d  

Subtracting the  equation 

n 

-8; 

Now l e t  J # L  
i n 

the  position vector of m w i t h  respect t o  m be si, so that 

xi =pi -&. Then 

r 

r 
2 -i rrt + k (m + ml)- = k 

-i n 3 
i 

Further, i f  . .  E;* -5 
i J  R = k2[' - 3 '  

'ij 'j 

h-l r 

r 
2 -i 

i 

then 
r" + k ( m  + mi)- = 
-i n 3 

j- I 
if; 

(1.3.7) 

(1.3.8) 

0 . 3 . 9 )  
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Now i f  a l l  the masses except m and m were zero, the r igh t  hand 

sides of (1.3.6) or  (1.3.8) would vanish, and the  equations of motion 
n i 

would refer t o  the  two-body problem; the  solution of t h i s  i s  called 

Keplerian motion, and i s  described i n  the  following chapter. It is  

frequently possible i n  ce l e s t i a l  mechanics t o  f ind a dominant body, 

m such that the  terms on the  right hand s ide of (1.3.7) are much n' 
smaller than k 2 (m + mi)zi/ri 3 . In  t h i s  case the  motion can be con- 

n 
sidered as Keplerian motion "perturbed" by t h e  forces on the  right hand 

side.  

mechanics. 

Keplerian motion; t he  forces on the  right hand side of (1.3.7) are 

"perturbing forces" and t h e  R 

This i s  why Keplerian motion i s  so important i n  c e l e s t i a l  

The word "perturbation" normally implies a departure from 

are  "perturbative functions". 
i j  

The reference system i n  (1.3.7) i s  non-inertial. The terms on 

the  right hand s i d e  include t h e  "direct" 

on mi, and the "indirect" a t t ract ions on 

application many of these terms m i g h t  be 

it can happen that t he  direct  a t t ract ion 

at t ract ions of t he  bodies 

mn' 
found t o  be negligible; but 

of a body is  negligible, 

t h e  origin. In  a prac t ica l  

but t h e  indirect  a t t rac t ion  i s  not. Further modifications can be 

made by ad jus t ing the  origin, and the  mass of the  dominant body; f o r  

details, see R e f .  2, section 9.5. 
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Chapter Two: The Two-Body Problem. 

2.1 Properties of Conics. 

Any orb i t  i n  t he  two-body problem i s  a conic, and before d is -  

cussing t h e  solution we s h a l l  b r i e f ly  review the  relevant properties 

of conics. 

The polar equation of a conic can be wr i t ten  as 

p/r  = 1 + ecosf, ( 2 c 1-. 1 ) 

where t h e  or igin i s  a t  a focus of the  conic, and f i s  the polar angle, 

measured from t h e  major axis. 

di rec t r ix"  def in i t ion  of a conic; i.e., t h a t  it i s  t h e  locus of a 

point such t h a t  t h e  r a t i o  of i t s  distance from a f ixed point (a  focus) 

t o  i t s  distance from a fixed l i n e  ( a  d i r ec t r ix )  i s  constant, t he  value 

of t h e  constant being equal t o  e.] 

the  conic i s  a c i rc le ;  i f  e i s  less  than one, it i s  an e l l ipse ,  which 

i s  bounded; i f  e = 1 it i s  a parabola; i f  e i s  greater  than one it 

i s  a hyperbola. 

Equation (2.1.1) follows from the  "foctls- I 

e i s  t h e  eccentricity;  i f  e = 0 

Let an e l l i p s e  have center C, f o c i  S, S' ,  major axis AA', and 

The following re la t ions  a r e  useful, and should be minor axis BB'. 

memorized: 

1 0 3  
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CA = CAI = a, 

CB = CB'  = b, 

SA = q = a(1-e),  

SA'  = q '  = a( l+e) ,  

C S  = CS'  = ae, 

p = a ( 1  - e ), 2 

2 2  2 b = a ( l - e ) ,  

2.1 

- A c S 

SB = a. 

The e l l i p se  can be obtained 

by t h e  orthogonal projection of a 

c i r c l e .  Let Q be a point on the  

circumference of the  c i rc le ,  and 

P t h e  corresponding point on the  

e l l i p se ,  and l e t  QP cut t he  major 

axis  a t  R. 

Further, letLACQ = E ( t h e  "eccentric 

anomaly"). With or igin a t  S, l e t  

the  X-axis point along SA, and the  

Y-axis point along t h e  l a t u s  rectum, a 

w i l l  be called t h e  "orb i ta l  reference 

of P can be writ ten: 

Then PR/Q,R = b/a. 

,s shown. This reference system 

system". Then t h e  coordinates 

X = a(cosE - e )  = rcosf,  Y = bsinE = r s i n f .  

The area of t h e  e l l i p se  i s  TTab. We a l so  'have 

(2.1.2) 
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r =  Jx' + 3 = a ( 1  - ecosE). 

Formulas f o r  t h e  parabola can be obtained from those f o r  t h e  

e l l i p s e  by (carefu l ly)  l e t t i n g  a -+ @ and e 31. 

t o  eliminate a or e using q = a ( 1  - e),  s ince q remains f i n i t e .  

Sui table  modifications t o  cover hyperbolic motion w i l l  be given i n  

sect ion 2.4. 

It i s  safest f i r s t  

2.2 The Solution of t h e  Orbit. 

Consider two p a r t i c l e s  of mass "1 and m Let t h e  posi t ion vector 2' 

of m with respect t o  m be r. From (1.3.7) w e  see t h a t  t h e  equation 
2 1 -  

of motion of m i s  
2 

rr' + k 2 ("1 + m , ) d r  3 = 0. - (2.2.1) 

If t h e  or ig in  w a s  a t  t h e  center of mass of t h e  two bodies, t h e  

reference system (non-rotating) would be i n e r t i a l .  Then i f  t h e  masses 

were a t  r and r t h e  equation of motion of m would be 
-1 -2' 2 

m r" = -k 2 y m 2 d r  3 
2-2 

Equations (2.2.1) and (2.2.2) a r e  of t h e  form 

r" = FJr 3 - 

(2.2.2) 



E l l i p t i c  Motion. 2.2 1 5  

but w i t h  d i f fe ren t  values of . /u 
Equation (2.2.3) requires s i x  constants of integrat ion f o r  i t s  

solution. Taking rx(2.2.3), we find rxr" = 0, so that - - -  

rxr' = - h, a constant. (2.2.4) - -  

h supplies th ree  a rb i t r a ry  constants. 

t he  equation of a plane through the origin.  The motion must take place 

i n  t h i s  plane; h determines i t s  orientation, as well  as t h e  magnitude 

of t h e  angular momentun. 

From (2.2.4), r .h  = 0, which i s  - -  - 

- 
Now take hx(2.2.3), and use (2.2.4). W e  f ind  - 

rJ 

f' i s  t h e  ve loc i ty  vector; r '  i s  the rate of change of t h e  sca la r  r. 

2 2  Different ia t ing - r = r , we f ind  - -  r.rt = rr'; a useful  relation.] 

Integrating, we obtain 

(2.2.4) 

where P i s  an a rb i t r a ry  vector; but since it i s  perpendicular t o  h, - - 
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it only contains two a rb i t r a ry  constants. 

t h e  motion w i l l  be considered i n  the following section. 

- r.(2.2.4) we obtain 

The remaining constant of 

Taking 

b 

or 

o r  

or  

r.(hxr') = -p - P.r - - -  - -  

- h . ( rx r ' )  = - p r  - P.r - - -  - -  
h 2 =pr + P.r - -  

2 This i s  t h e  same as equation (2.1.1). 

- P points  along t h e  major a x i s  toward pericentron, and P = y e .  

angle f i s  cal led t h e  "true anomaly". 

t he  branch of t he  hyperbola t h a t  i s  concave toward the origifi can be 

We have h = p, t he  vector 

The 

If e i s  greater  than one, only 

described i n  the  motion. 

2.3 The Orbit i n  Time. 

The vector r '  has components r '  along $ and rf perpendicular 

it; therefore t h e  modulus of rxr' is  r f I ,  which i s  twice t h e  r a t e  

- 
2 -- 

to 

of 

change of t h e  area 

The integrat ion of 

swept out by the radius vector. From (2.2.4) we have 

(2.3.11 
2 r df/dt  = h. 

t h i s  equation supplies t he  f i n a l  constant of i n t e -  

gration. 

but except when e = 1, it i s  convenient t o  introduce an intermediate 

Substi tuting f o r  r from (2.1.1) we get a simple integral ;  

1 i 3  
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angle, t h e  eccentric anomaly. 

Assume t h e  motion t o  be e l l i p t i c .  Different ia t ing (2.1.3) we 

f ind  

r' = aesinE E ' .  

And d i f fe ren t ia t ing  rcosf = a(cosE - e ) ,  (from ( 2 * 1 = 2 ) ) ,  

r 'cosf  - r s inf  f' = -asinE E ' .  

Eliminating r '  and f ' from these two equations and (2.3.1) w e  f ind  

hsinf = asinE E ' ( 1  + ecosf)r .  

Now using t h e  re la t ion  

2 2 
h = p p  =,ua(l - e ), 

and t h e  formulas (2.1.2) and (2.1.3) t o  eliminate f and r, we f ind  

qy/a3 = (1 - ecosE)E', 

which can be integrated t o  give 

- T) = E - esinE, 

where T i s  a constant of integration; it i s  equal t o  t h e  time when 

E = 0, or  when the  body i s  a t  pericentron. This i s  Kepler's equation. 

By l e t t i n g  t h e  eccentric anomaly go from 0 t o  2T, we get t h e  time 

f o r  a complete revolution, or  t h e  period of the  motion, which i s  

P = 2 d a T  (2.302) 
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The "mean motion", n, i s  defined by 

2 3  n = 2 ~ j - / ~ ,  SO t h a t  n a =r. (2.3.3) 

The angle 

M = n ( t  - T )  (2.3 *4) 

i s  defined a s  t h e  "mean anomaly". So Kepler's equation can be writ ten as 

M = E - esinE. (2.3.5) 

Normally we a re  given the time, and want t o  calculate E. That 

there  i s  a unique solution can be seen f romthe  f ac t  t h a t  t h e  r igh t  

hand s i d e  of (2.3.5) i s  monatonic increasing with E ( f o r  i t s  d i f f e ren t i a l  

coefficient with respect t o  E i s  (1 - ecosE), which i s  always posi t ive) .  

One of t he  best  ways t o  f i n d  E i s  t o  use Newton's method. 

a good guess, and E i s  correct, l e t  

If Eo i s  

A E = E -  EO, 
and 

a M = M - M  = M  - E  + esinE 0' 
0 0 

Then i f  (&)2 i s  neglected, 

A E  = A M / ( l  - ecosEo) . 

Because of t he  approximation, t h i s  correction i s  not exact, and the  

process w i l l  have t o  be repeated untilAM becomes l e s s  than some 

small pre-assigned value. 

when a good f i r s t  guess i s  

This process converges best  when e i s  small, 
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E = M +  esinM, 0 

(although the  se r i e s  for E i n  terms of M and powers of e, given i n  

t h e  following chapter, can be truncated l a t e r  i f  desired).  

de t a i l s ,  and for a discussion of t h e  s i tua t ion  when e i s  nearly equal 

t o  one, see R e f .  3. 

For more 

2.4 Miscellaneous Properties. 

Kepler's th ree  l a w s  of planetary motion are:  

1. The orb i t  of each planet i s  an e l l ipse ,  w i t h  the  Sun at one of 

i t s  foc i .  

clude parabolic and hyperbolic motion, so that "conictr might replace 

"e l l ips  e''. ) 

2- 

sweeps out equal areas i n  equal in te rva ls  of time. (Therefore t h e  

acceleration of the  planet i s  directed toward t h e  Sun, and so also 

i s  t h e  force act ing on the  planet. 

Newton's l a w  of gravi ta t ion can be deduced.) 

3. The squares of the  periods of any two planets a r e  i n  t h e  same 

proportion as t h e  cubes of' t h e i r  mean distances from the  Sun. This 

l a w  should be modified so tha t  P (7 + m2)/a3  i s  a constant f o r  any 

two bodies, where a i s  the  semimajor axis  of t h e  r e l a t ive  orb i t ,  P 

i s  t h e  period and "1 and "2 are t h e  masses of t h e  bodies. The l a w  

can be used t o  f ind  the  mass of a planet t h a t  has a s a t e l l i t e .  

(Actually 'Xeplerian motion" i s  often now taken t o  in-  

Each planet revolves so t h a t  t h e  l i n e  joining it t o  t h e  Sun 

From t h i s  l a w ,  and t h e  f irst ,  

2 

Many important formulas f o r  e l l i p t i c  motion have been given already. 
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A notable omission i s  the  energy integral ,  

The parabolic velocity, o r  velocity of escape i s  found by putting 

1/a = 0. The circular  velocity i s  found by putting r = a. 

When changing from E t o  f or f t o  E, t he  following formulas a r e  

useful: 

cosf = (cosE - e ) / ( l  - ecosE), sinf - ecosE), 

COSE = ( e  + c o s f ) / ( l  + ecosf), 
(2.4.2) 

sinE 

2 Using the  re la t ion  t an  (f/2) = (1 - cos f ) / ( l  + cosf),  it i s  easy t o  

ver i fy  t h a t  

r 

tan(  f /2)  q p  - e  tan(  E/2). (2.4.3) 

When using these formulas, it should be remembered t h a t  f /2  and E/2 

always l i e  i n  t h e  same quadrant. 

as  i s  commonly done, then 

If we write e = sinb(0 4 0 < 7 2 ) ,  

From Kepler's equation, and  (2.1.3) we have 

E '  = na/r. 

Also we have 

2 r '  = na esinE/r = (eP/h)sinf. 

(2.4.4) 

(204.5) 
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Formulas ( 2.1.2) are  important. Differentiating them, w e  f ind 

2 X I  = - na sinE/r, 

Y ’ = n a 2 G 2  cosE/r. 

I n  parabolic motion l e t  q be the  pericentron distance, then the  

equation of t he  orb i t  i s  

2 r = q sec ( f / 2 ) .  

An equation involving the  time is 

Formulas f o r  hyperbolic motion can be derived fromthose f o r  

e l l i p t i c  motion a s  follows. 

If i 

Assume a t o  be negative fo r  a hyperbola. 
2 

= -1, replace E by iF (so t h a t  cosE becomes coshF and sinE 

-u, whereU2a3 = f ,  andv i s  posit ive,  

Many important formulas have been omitted here. The reader should 

consult, i n  particular,  R e f .  3. 

2.5 The O r b i t  i n  Space. 

A n  o rb i t  i s  defined by s ix  constants, and these require some 

kind of reference system. 

used as reference planes, with the direction of t h e  vernal equinox 

defining an axis. 

The ce l e s t i a l  equator or  ec l ip t i c  a r e  often 

Neither of these planes i s  fixed, and it i s  necessary 
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t o  use t h e i r  mean positions for  some def in i te  epoch. 

A sui table  se t  of constants would be the  components of position 

5, G ,  a t  some t i m e  t and velocity, 

these t h e  posit ion - r a t  anytime t (formulas f o r  t h e  calculation of 

t he  veloci ty  a re  eas i ly  deduced and w i l l  not be given here).  Since 

the  motion takes place i n  a plane, it must be possible t o  resolve - r 

it i s  possible t o  calculate from 
0 ;  

along t h e  directions of r and r' So we can w r i t e  -0 -0. 

r = f r  + g r '  - -0 -0' 

where f and g a re  scalar  functions of t and t and the i n i t i a l  con- 

di t ions.  From (2.5.1) we f ind 

0 

f h  = m' and g c =  rxr .  - - 4  4- 

These a re  vector equations, independent of the reference system. 

So f and g can be evaluated by substi tuting components referred t o  

t h e  "orbi ta l  reference system" defined i n  section 2.1. The components 

a r e  given by formulas (2.1.2) and (2.4.6). 

simplification, w e  f ind  

A f t e r  substi tution and some 

f = --[cos(E a - Eo) - ecosEo], r 1 (2.5.2) 

g = --[sin(E 1 - Eo) - e( sinE - sinEo)] . J 

Before using (2.5.1) and (2.5.2) t o  calculate - r, it would be 

necessary to  calculate a ,  e, Eo, and E. 

(2.4.1) w i l l  give a. 

We a re  given r and 5. 4 

Then (2.1.3) and (2.4.5) w i l l  give ecosEO and 

1 1 3  
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esinE ( I n  using (2.4.5),  remember 

t h a t  r r '  = r '  ) Finally,  Kepler's equation can be used t o  find E. 

from which e and Eo can be found. 
0' 

0 0  5'4' 

I n  t h e  formulas above a, e, and E a r e  introduced as intermediate 

elements; but they help t o  give a p ic ture  of t h e  shape and s i ze  of t he  

orb i t ,  and the  i n i t i a l  whereabouts i n  t h e  orb i t ,  t h a t  r and r '  com- 

p l e t e ly  f a i l  t o  do. 

which has an eas i ly  visualized geometrical meaning; these a r e  t h e  

"geometrical elements" of t h e  o r b i t .  

and a t h i r d  i s  a time of pericentron passage, T, or any number, such 

as the  mean anomaly a t  some time, t h a t  enables t h e  posit ion i n  t h e  

e l l i p s e  t o  be found a t  any time. The description of the  or ientat ion 

of t h e  orb i t  i n  space requires th ree  angles, i l l u s t r a t e d  below. 

0 

-0 -0. 

It i s  more usual  t o  use s i x  constants, each of 

a and e a r e  two possible elements, 

R 

P 

€ C  / , p  fi c 

123 
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I n  t h e  figure the  fundamental plane i s  the  ec l ip t i c  (it could equally 

well  be t h e  ce l e s t i a l  equator, if preferred), t he  Sun i s  a t  0, Ox 

points toward the  vernal equinox and Oz toward the  north pole of t he  

ec l ip t ic .  The plane of t he  orbit  cuts  the  c e l e s t i a l  sphere i n  t h e  

great c i r c l e  "R where N i s  the point where t h e  body i n  i t s  orb i t  

crosses t h e  ec l ip t ic ,  going north; it i s  called the  "ascending node". 

The angle xON (measured eastward around the  ec l ip t i c )  i s  called the  

"longitude of t h e  ascending node" and i s  wri t ten as R . The angle 

between the  ec l ip t i c  and the  plane of t he  orb i t  i s  the  "inclination", 

I. For 0 < I < 90" t h e  orb i t  i s  direct ;  f o r  90" < I < 180", it is  

retrograde. 

(measured i n  t h e  sense i n  which t h e  o rb i t  i s  described) i s  called t h e  

If O P  points toward pericentron, t he  angle NOP = w 

"argument of pericentron". 

These s i x  constants a r e  suff ic ient  t o  give a geometrical picture  

of t he  orbi t ,  ard t o  enable position (and velocity) i n  the  orb i t  t o  

be calculated a t  any time. 

(J= 

centron" would be replaced by "perihelion", or  Itperigee", etc.  as 

appropriate. ) 

Among the  a l te rna t ives  often used i s  
Q 

+ (J, called the  "longitude of pericentron". (The word "peri- 

To find t h e  position a t  any time when t h e  elements a r e  given, 

f irst  solve Kepler's equation for the  appropriate value of the  eccentric 

anomaly, and then use equations (2.1.2) t o  f ind the  coordinates i n  the  

o r b i t a l  reference system. The coordinates i n  t h i s  system can be related 
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t o  the  coordinates i n  any other system by a se r i e s  of rotat ions.  The 

following successive rotations: - u a b o u t  t he  Z-axis, -I about t he  

new x-axis, and -n about t h e  new z-axis, w i l l  transform coordinates 

i n  t h e  o r b i t a l  reference system t o  those i n  t h e  x-, y-, z-  system of t h e  

f igure.  

t h e  obl iqui ty  of the  e c l i p t i c )  w i l l  lead t o  coordin@es based on t h e  

A fur ther  ro ta t ion  about t h e  x-axis through - €(where E i s  

c e l e s t i a l  equator; these a r e  necessary i f  r igh t  ascension and declination 

a r e  t o  be calculated. The transformation resu l t ing  from a rotat ion 

about an axis  of reference can be most conveniently described by a 

matrix multiplication. For detai ls ,  see Ref. 2, Appendix B. The 

. 

r e su l t  of a l l  t he  rotat ions described above can be wri t ten i n  t h e  form 

where the  P's and Q's a r e  direction cosines of t h e  X- and Y-axes with 

respect t o  the  x-, y-, z-axes. 

Suppose t h a t  it i s  required t o  f ind  t h e  geometrical elements when 

5, $, a r e  given f o r  a time t posi t ion and velocity,  

from (2.4.1) and e and Eo from (2.1.3) and (2.4.5), as  before. 

T ,  or  M 

equation. 

from formulas : 

a i s  found 
0' 

Then 

t h e  mean anomaly at the epoch, can be found fromKepler 's  
0' 

The individual angles 9 , w , and I might now be found 

122 
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h = r x r '  - - 0 - 0  

= (hx' hy, hZ),  

h X = hsi&sinI,  

h = - hcosRsin1, 
Y 
h = hcosI. 

Z 

f from (2.4.3) 

26. 

(2.5.4) 

sinu = kcosec1, r 
rcosu = xcosR + ysinfl ,  

( u  i s  t h e  "argument of t h e  l a t i t ude" )  

w =  u - f, 

where an extra 360" may have t o  be added t o  m a k e u  l i e  between 0 and 

360". 

Alternatively,  it -my be b e t t e r  t o  f ind  t h e  P 's  and Q's of (2.5.3) 

d i r ec t ly .  (2.5.3) can be writ ten more general ly  as 

P 

- x  P Y Qx\k &Y 

where X 

for t h e  P ' s  and Q ' s ,  we f ind  (since X Y' - Y X' = h) ,  

= a(cosEo - e) ,  e tc .  from (2.1.2) and (2.4.6). Then, solving 
0 

0 0  0 0  
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px Qx' 

2.5 

yo yd 

z 2 '  xo 0 0  

The individual angles \ 1 , w , and I can a l so  be determined from the  

P ' s  and Q's.  

For an account of t he  determination of the  elements when two 

positions f o r  two different times a re  given, see Ref. 3. 

In  cer ta in  cases some element can only be poorly determined. For 

instance, i f  e i s  small, Eo and w or 0 cannot be found a s  accurately 

as t h e  other elements because, somewhere along the  l ine ,  t h e i r  cal-  

culation involves division by e. 

poorly determined. 

d i f f i c u l t i e s  t h a t  resu l t .  

i n  themselves. Suppose tha t  the object of t h e  work i s  t o  calculate  

posit ion and veloci ty  a t  any t i m e ;  then it need not matter that f o r  

small e an angle such a s  w i s  poorly determined ( i n  f a c t  there  w i l l  

be a multiplication by e during t h e  calculation),  and t h e  accuracy of 

t he  f i n a l  resu l t  need not suffer a t  a l l .  Di f f icu l t ies  due t o  a small 

I can be avoided by using the  P ' s  and Q's .  If a programer i s  deter-  

mined t o  avoid any division by e, there  a r e  several  ways i n  which t h i s  

can be achieved. One poss ib i l i ty  i s  t o  use ecosE and esinE as 

elements; there  need be no doubt about t h e i r  accuracy. 

eccentric anomaly a t  t i m e  t, then from Kepler's equation applied t o  the  

& 

Similarly, i f  I i s  small, Q i s  

It i s  possible t o  put too much emphasis on the  

w o r  5;\ should not be considered a s  goals 

0 0 

Let E be the  
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times t and t, we find 
0 

Eo - esinE + esinE n ( t  - t ) = E - 
(2.5.6) 

0 0 

d l 3  - esinE c o b 3  + esinEo, = L E  - ecosE s i  
0 0 

where& = E - Eo. This can be solved f o r  n E, and then esinE and 

ecosE can be calculated, and (2.5.2) and (2.5.1) used t o  f ind  the  

posit ion a t  time t. 

If t h e  elements a r e  t o  be considered a s  slowly varying quant i t ies  

i n  perturbed motion, other problems may ar ise ,  and different  elements 

a r e  needed f o r  special  cases. 
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Chapter Three: Expansions i n  Series. 

3.1 Expansions i n  Powers of the Eccentricity. 

The stumbling block i n  any attempt t o  express posit ion i n  Kep- 

le r ian  motion expl ic i t ly  i n  terms of t he  time, comes i n  any attempt 

t o  express the  eccentric anomaly expl ic i t ly  a s  a function of t he  mean 

anomaly. 

But i f  the eccentr ic i ty  i s  suff ic ient ly  small, approximate expressions 

can be developed that a r e  good enough. 

planets and s a t e l l i t e s  i n  t h e  solar system have orb i t s  with moderately 

small eccentr ic i t ies .  

I n  general it cannot be done i n  a f i n i t e  number of terms. 

Fortunately, nearly a l l  the 

For a c i rcu lar  orbi t ,  E = M. If e i s  small, then, writ ing Kepler's '  

equation i n  the  form 

E = M - esinE, 

we see t h a t  t o  t h e  order of e, we can put 

E = M +  esinM. 1 

Now if we put E = E +bEl ,  and ignore e3, we f ind 2 1  

1 2  E = M + esinM + -e sin2M. 2 2 

Further development along these l i nes  becomes immensely tedious, 

and it would be an advantage i f  some formula could be found t h a t  would 

give t h e  general term. Such a formula i s  given by Lagrange's theorem, 
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which can be stated f o r  the problem i n  hand as  follows: 

Let E = M +  e f (E) ,  

then F(E) = F(M) + Ef(M)F'(M) e + 7 e2 - d @'(M)] $'(M)] + ... 2. dM 

... + -- e' dq-l k ( M ) ]  9 F ' ( M ) )  + ... 
9: dMg-1 

Now put F( E) 5 E, so t h a t  F ' (E)  = dF/dE = 1; and put f (E)  

Then we get 

si-. 

n ,n-1 e a  2 e e 6  
1. 2 !  dM E = M + --;-sinM + - -(sin%) + . . . + n! sinn+%) + . . . (3.1.1) 

Any other F(E), such as r = F(E) = a( 1 - ecosE), can be expanded 

similarly. 

The general statement of Lagrange's theorem would have been 

timely, because it includes the condition f o r  convergence of t h e  ser ies  

(and it i s  not often that  a question of t h e  convergence of a ser ies  

i n  c e l e s t i a l  mechanics can be answered). 

a discussion here, but see Ref. 4, Sec. 46. 

i n  powers of t h e  eccentr ic i ty  converge f o r  values of e l e s s  than  0.6627 .... 

Limitation of space prevents 

The upshot i s  tha t  s e r i e s  

3.2 Applications of Lagrange's Theorem. 

An unattractive feature  of (3.1.1) i s  t h a t  powers of trigono- 

metric functions appear. It i s  usually simpler t o  deal with terms such 

as sinkM rather  than sin%, so tha t  Fourier series a r e  generally pre- 

ferable  t o  power ser ies .  Al so  it i s  laborious t o  change from one t o  t h e  

127 



3.1 31. E l l i p t i c  Motion. 

other, so that it i s  an advantage i f  a Fourier ser ies  can be generated 

i n  the  first place. 

function. For 

One way of doing t h i s  i s  t o  use the  exponential 

E = ~ =  cosm + isiw, 

where E i s  the  exponential and i2 = -1, so t h a t  what i s  generated a s  

a power ser ies  i n  E becomes a Fourier ser ies .  iM 

Consider (2.4.3). It i s  usua l  i n  these developments t o  get r i d  

of t h e  square root, so we introduce 

so t h a t  p =  $41 +p 2 ). 

A l s o ,  introducing sin0 = e, we h a v e p =  t a 4 .  

(3.2.2) could equally well have been writ ten as 

T h e n p  can be expanded i n  powers of - 1 e by Lagrange's theorem t o  give 
2 

= j  

For a term t o  survive the  operation M = 0 after the  different ia t ion,  
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w e  must have 2pt-j-1 = q-1. Then f o r  a def in i te  value of p, q = 2pt j ;  

so w e  can write 

We a r e  now i n  a position t o  consider expansions i n  powers of/?. 

For the applications, put 

where i2 = -1, and the logs a r e  t o  the base E, so that x = Eif, e tc .  

Then 

xk - l/xk = 2isinkf,  e tc .  k x + l/xk = 2coskf, 

From (2.4.3) and (3.2.1) we have 

so 

x - 1  1 + p y - 1  

l -P  y + l '  
x+l= 

Then from the  first of these, 

logx = logy + log(1  -P/Y) - lodl -/DY), 

and, bearing i n  mind tha t  f o r  I z1<1, log( 1 + z )  = z - z2/2 + z3/3 + . . . , 
we can write t h i s  a s  

logx = logy + P ( y  - l /y )  + $?cy' - l/y2) + . . . , 

1 2 3  
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s o  t h a t ,  from (3.2.4) w e  have ( a f t e r  d iv is ion  by i) 

+ $&!sin2E + F3sin3E + . . . ) . (3.2.6) 

From (3.2.5) w e  see that t o  exchange x and y it i s  su f f i c i en t  t o  change 

t h e  s ign o f p .  Therefore 

Subst i tut ing from (3.2.4) i n t o  Kepler ' s  equation, w e  have 

logz = logy - p ( y  1 - l / y )  . 

Eliminating y, from (3.2.5), and using (3.2.2) t o  eliminate e, w e  can 

transform t h i s  t o  

logz = logx + l og (1  +P/X) - l og (1  + p x ,  - q ) { < G ;  . 1 

=-= cosb, s o  tha t  t h e  f i n a l  term on t h e  r igh t  hand 

be wr i t ten  as 

= p c o s q +  - p / x  +p 2 2  /x - . . .) - x( 1 -px +p2x*  - . . .)] . 

Therefore, expanding t h e  logarithms as before, and subs t i tu t ing  from 

(3.2.4) ,  we get  

1 3 3  



E l l i p t i c  Motion. 3 - 2  34. 

The difference between the  mean and t rue  anomalies i s  called the  

"equation of the  center". 

3.3 Fourier Series.  

The derivation of t he  ser ies  i n  the preceding section was a 

t r i f l e  roundabout. 

Fourier s e r i e s  we shall b r i e f l y  s t a t e  enough theorems t o  build up the 

relevant background. 

Before proceeding with the d i rec t  derivation of 

Le t  f ( t )  be a periodic function with bounded var ia t ion and period 

a l e t  it be integrable f o r  a l l  t, so t h a t  the  products f ( t ) s i n p t ,  

f ( t ) c o s p t  a r e  a l so  integrable.  Define 

and 

f ( t ) c o s p t  d t ,  b P = $ p t ) s i n p t  d t .  

The se r i e s  

a + (a cospt + b s inp t )  
0 P P p = I  

( 3 . 3 4  

i s  cal led the  Fourier se r ies  of f ( t ) .  

i s  equal t o  f ( t ) .  

Fourier s e r i e s  i s  uniformly convergent. 

If f ( t )  i s  continuous, i t s  sum 

Furthermore, i f  i t s  der ivat ive i s  bounded, then the  
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If the  form (3.3.1) i s  accepted, then the formula f o r  t he  co- 

e f f i c i en t s  i s  very eas i ly  recovered by multiplying through by cospt 

or  s inpt  and integrat ing from 0 t o  2r, so t h a t  every term but one 

vanishes. 

it i s  suf f ic ien t  t o  in tegra te  from 0 t o  n, and divide by g / 2 .  

If f ( t )  i s  an even function, then only t h e  a appear, and 
P 

Similarly, if f ( t )  i s  an odd function, only the b appear. 
P 

Using the  exponential function, we could a l so  put 

f ( t )  =E a Eipt, 
P - 

p=- 63 1 
(3.3.2) where 

(Note that as soon as trigonometric functions a r e  replaced by ex- 
ponential  functions, the  summations must go from minus i n f i n i t y  t o  
p ~ d a  i n f i n i t y .  ) 

Consider the expansion of the function a / r  a s  a Fourier s e r i e s  

i n  the mean anomaly. 

M. Also a/r = dE/dM. Therefore 

It i s  an even function of E, and consequently of 

rf 

5 r = Lra FdM++j= cospM1 8-cospM r dM 

F=/ 
n' 00 

- - 1 / dE +$E cospMI cos(pE - pesinE)dE. 
fl 

JO p =I 10 

Define the "Bessel 's coefficient" J ( x ) ,  o r  order p and argument x by 
P 
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J ( x )  = -% cos(p@ - xsino) d@. 
p T  

Then w e  can w r i t e  

OD 

(3.3.4) - a = 1 + 2 1  J ( p e ) c o s P .  r P 
PI 

These coef f ic ien ts  are ubiquitous, and it i s  necessary t o  break 

off and derive some of t h e i r  properties before continuing t o  develop 

any other series. 

3.4 Propert ies  of Bessel's Fw,ztions. 

Jp(x) w a s  defined i n  (3.3.3). But since 

A! 
sin(p4 - xsino) do = 0, +I* 

we could have wr i t ten  (-id- 
d@ * 

J (x )  = - l) E- i d g i x s i n @  
P 2P- 0 

ixsinb 
Now suppose t h a t  we wanted t o  expand the  function E a s  

p = m  
Then, from (3.3.2) w e  would f i n d  that& = J so that 

P P' 
f W  

Eixsin4 - -L Jp(x)E id , 
'cy, 

( 3 . 4 . 0  

(3.4.2) 

a formula tha t  can be useful ,  incidental ly ,  where trigonometric func- 

t i ons  of trigonometric functions a r e  concerned. 

1 3 3 
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Now put Eio = z, so that 2 i s i n b  = z - l / z .  Then (3.4.2) becomes 

exp[3z - 1 / z ) ]  = Jp (x )zp .  
- 0 0  

(3.4.3) 

The l e f t  hand side of (3.4.3) can be w r i t t e n  as the product of 

To f ind  t h e  coeff ic ient  of z P p u t a  = p  + p. Now Qcannot be negative, 

so  tha t  f o r  p > O ,  

(3.4.4) 

For p < 0, the  summation runs fromp = -p, -pl, . . . . The series 

(3.4.4) i s  absolutely convergent f o r  a l l  x. 

I n  (3.4.3) change z t o  -2, and x t o  -x; the  l e f t  hand s ide i s  the 

same, so that 

J (x )  = (-1)’J ( -x ) .  
P P 

Also, change z t o  - l / z .  The l e f t  hand s ide  i s  s t i l l  the same, so that 

J (x) = (-1)’J ( x ) .  
P -P 

Combining these t w o  results, w e  f i n d  

J (-x) = J ( x ) .  (3.4.5) -P P 

Dif fe ren t ia t ing  (3.4.3) w i t h  respect t o  z, and using (3.4.3) t o  

1 3 4 
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remove the exponential on the  l e f t  hand side,  we get 

'x(1 + l / z 2 )  CJ (x)  zp = xpTp(x )  zP- l .  F P 

So t h a t  from the coeff ic ients  of zP-l ,  we f ind  

Similarly, d i f fe ren t ia t ing  (3.4.3) w i t h  respect t o  x, and con- 

s ider ing the coeff ic ients  of z P , we can f ind  

Different ia t ing (3.4.7) with respect t o  x, we have 

1 
J" (x)  P = -[.I 2 p-1 ( X I  - J&,(x)] 

So J i s  a solution of the  equation 
P 

y" + ;;y' 1 + (1 - p 2 2  /x ) y  = 0. 

The general theory of Bessel ' s  functions can start  from t h i s  equation; 

but t h i s  i s  not needed f o r  our purpose. 

of the f irst  kind, w i t h  in tegra l  values of p, and the  def in i t ion  given 

We need only the  solutions 
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E l l i p t i c  Motion. 3.4 39 * 

above i s  suf f ic ien t .  

The se r i e s  (3.4.4) demonstrates t ha t  the J can always be calcula- 

ted.  But there a re  many al ternat ive methods of calculation, using such 
P 

devices as recurrence relations,  or continued f rac t ions .  See Ref. 1. 

3.5 Applications of Bessel ' s  Functions. 

Consider the expansion of si&. It i s  an odd function of E or 
r 

00 
M, so tha t  

s i r i  = + s i n p t 4 1  s l r i  sinpld a.f. 
1 
P rlr 

Now sinpM dM = - -d(cospM), so t h a t ,  introducing E, we can wri te  

1 2 
n sinmE = - -E I sinmE d cos(pE - pesinE) , 

and, integrat ing by par ts ,  '0 
'iT 

sinmE = - 2 ?[si& cos(pE - pesinE)] 

1 T 0 

mcosmE cos(pE - pesinE) dE . -1 
The integrated term vanishes a t  the  l i m i t s ;  using the  formula f o r  the  

product 

sinmE = 

of two cosines, the integrand can be developed 

k - y [ & o s [ ( p t m ) E  - pesinE] + cos[(p-m)E 

m x y {  J P-m (pel + J P+m 

p" 
When m = 1, we have, by (3.4.6), 

t o  give 

- pesind]dE 

(3.5.1) 

1 3 G  
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Similarly,  w e  f ind 

cosmJ3 = a + >f cospM[cosmE! cospM dM 

r' 
- - a. + $xcospMlrFinmE sin(pE - pesinE) dE 

n 
U 

(af ter  in tegra t ion  by p a r t s )  

( P 4  - Jptrn(pe) * 1 = a. + m x y b  cospM 
p-m 

lr P 
Here 

dM = kl;smE (1 - ecosE) dE 

- - $Z l [cosmE - pcos(mt1)E 1 - pos(m-l )E]dE 1 

= 1 if m = 0; -e/2 i f  m = 1; o i f  m >  1. 

I n  pa r t i cu la r ,  using ( 3.4.7), 

cosE = - -e 1 + 2 x F  J i ( p e  ) .  
2 (3.5.2) 

We now have enough formulas t o  expand qu i t e  a l o t  of functions 

as Fourier s e r i e s  i n  the  mean anomaly. For instance,  Kepler 's  

equation combined with (3.5.1) w i l l  cope with E. 

using (2.1.3) and (3.5.2) .  

r /a  can be expanded 

X and Y of (2.1.2) can be found similarly.  

Sometimes a l i t t l e  ingenuity can help; i n  seeing, f o r  instance,  that 

X / r  3 = -a -3d2x/cd, Y/r3  = -a-?d2Y/cd. Another example i s  

2 d r  sinf = v l - e  s inE/ ( l  - ecosE) = cot4 d-1 dMa * 

cosf i s  e a s i l y  found from (2.1.1) and (3.3.4) .  

(./a) 

A function such as  

2 can be e a s i l y  wr i t ten  down i n  terms of a Fourier  s e r i e s  i n  E, 

and from there  t o  one i n  M. And so on. Many more examples are given 

1 3 7  
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i n  Refs. 1 and 4. 

It should be noted t h a t  these Fourier s e r i e s  a r e  va l id  for any 

value of the eccentr ic i ty;  but i f  they a r e  re-arranged as power series 

i n  the  eccentr ic i ty ,  then the  upper l i m i t  noted i n  Sec. 3.1 appl ies .  

I n  the  series f o r  a/r o r  r/a or powers of these, it i s  noticeable 

t h a t  t h e  lowest power of e i n  any coef f ic ien t  i s  equal t o  t h e  mult iple  

of M i n  tha t  term; t h i s  f a c t  i s  a great  help when deciding where t o  

tru?n_cate a se r i e s .  Although the equal i ty  j u s t  pointed out i s  not 

general, t h e  f a c t  that t h e  lowest order of e increases as t h e  co- 

e f f i c i e n t  of M is; t h i s  i s  a charac te r i s t ic  of these expansions 

s t ressed  by D'Alembert, which now bears h i s  name. 

of (a/r)- t i m e s  t h e  s ine or cosine of rn t i m e s  t he  eccentr ic  o r  true 

anomaly, t h e  lowest power of e i s  i n  general equal t o  t h e  coef f ic ien t  

of M minus m. 

I n  the  expansion 

+k 

1 3 3  
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Post s c r i p t .  

My impression on reading these notes i s  t h a t  they are par lously 

No mention has been made of expansions i n  powers of t he  incomplete. 

t i m e ;  nor of t he  f i r s t -o rde r  differences between two "nearly equal" 

e l l i p t i c  o rb i t s .  

determination" and a re  dea l t  with more than adequately i n  Ref. 3. 

Nothing has been said about the proper choice of un i t s ,  even though, 

without t h i s ,  an attempt a t  p rac t ica l  calculat ion i n  c e l e s t i a l  mechanics 

may be s t i l l bo rn .  Also hyperbolic o r b i t s  have been neglected, i n  

s p i t e  of t h e i r  increasing importance. 

omissions, t h e  reader should redress the  balance by consulting some 

of t h e  references.  

But these fall usual ly  under t h e  heading of "orbi t  

Bearing i n  mind these and other 
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Matrix Methods. 

by J.M.A.  Danby 

1. 

Consider t h e  system of n f i r s t  order d i f f e r e n t i a l  equations 

dXi/dt = fi(xl, x2, ..., xn; t> ,  i = 1, 2, . - .  n, ( 1) 

r e l a t i n g  t h e  n coordinates Xi and t h e  t i m e  t. 

symbolically i n  t h e  condensed form 

These can be wr i t t en  

x' - = f ( X , t ) ,  - -  

where X and f are column matrices; t h e  primes represent d i f f e r e n t i a t i o n  

wi th  respec t  t o  t h e  time. 

- - 

Suppose t h a t  a so lu t ion  &(t) has been found, having i n i t i a l  

conditions &(to) = X A " s l igh t ly  d i f f e r e n t ' '  so lu t ion ,  X &, 4- 4 -  

might be found by solving equations (1) again, subject t o  i n i t i a l  
r- 

conditions X + O X  a t  t ThenbX would be found by sub t r ac t ing  X - 0 4  0'  - 4' 

But t h i s  approach can be extravagant i n  s i g n i f i c a n t  f i g u r e s ,  and it i s  

o f t en  b e t t e r  t o  solve d i r e c t l y  f o r 6 X .  - 

If t h e  squares and products of small q u a n t i t i e s  are neglected, 

t h e n 6 ~  - must s a t i s f y  t h e  f i rs t  v a r i a t i o n a l  equations of t h e  system (1): 



Matrix Methods. 

o r  

afl/ax2 . . . 

. . .  

. . .  

. . .  

The solut ion &(t)  w i l l  be called t h e  "reference orb i t " .  Each of t h e  

p a r t i a l  d i f f e r e n t i a l  coeff ic ients  i n  t h e  n-by-n matrix A i s  evaluated 

along the  reference o rb i t ,  so t h a t  A i s  a known function of t h e  t i m e .  

Equations (2 )  a r e  solved when any s e t  of n l i n e a r l y  independent 

solut ions i s  known. Finding these may present d i f f i c u l t i e s ;  but 

suppose f o r  t he  moment t h a t  we have such a s e t ,  and that it cons is t s  

of t h e  separate columns of t h e  matrix with elements6x ( t )  . Since 
i j  

any l i n e a r  combination of these columns a l s o  gives a solution, t h e  

columns of 

must a l l  be solutions.  The m t r i x  o(t0,t) i s  equal t o  the  i d e n t i t y  

matrix when t = t t h i s  provides t h e  necessary i n i t i a l  conditions t o  
0 ;  

f ind  i t s  components by numerical in tegra t ion .  For example equations 

( 2 )  would be solved subject t o  the i n i t i a l  conditions6x.l = 1, 

1 4 i 



3 .  Matrix Methods. 

dXi = 0 (i # 1) t o  give t h e  first column. 

t h e  second column would be 6 X ,  = 1, 6 X. = 0 ( i  # 2 ) ;  and so on. 

The  i n i t i a l  conditions f o r  

1 

( to, t )  i s  cal led t h e  "matrizant" ( o r  "fundamental solut ion matrix" 

o r  "state t r a n s i t i o n  matrix") of t h e  system ( 2 ) .  

columns satisfies (2), it must i t s e l f  s a t i s f y  

Since each of i t s  

Q' = q, (4) 

where R(t,,to) = I. 

If t h e  function X t were t o  have i n i t i a l  condi t ionsbX(t  ) =bX+, (j-( - 0  
then t h e  appropriate solution of ( 2 )  would be 

@(t) - = Q (to,t)&. ( 5 )  

It i s  c l ea r  that Q(t , t)  i s  the Jacobian matrix with components 0 

(Matrizants were introduced by Peano and Baker. Their theory i s  

discussed i n  t h e  S u e r  I n s t i t u t e  Notes of 1960, p. 95, e t  seq., and 

i n  many t e x t s  on d i f f e r e n t i a l  equations; but t h i s  theory i s  not 

d i r e c t l y  relevant t o  t h e  present discussion.)  

Consider t h e  r e l a t ions  between res idua ls6X a t  t i m e s  t tl, and 0' - 
t2. We have 

and 

1 4 2  



Matrix Methods. 4.  

a r e s u l t  tha t  i s  a l so  evident from the  f ac t  tha t  Q(to,t) i s  a Jacobian 

matrix. 

Consider the application of the  ma t r i zan t  t o  some s i tua t ions  i n  

the  context of astronautics.  Suppose t h a t  a reference orb i t  has been 

calculated.  If some maximum permissible e r ro r  a t  time t 

then the maximum permissible error a t  any e a r l i e r  time t 

i s  specified,  

can be ca l -  

1 

0 

culated i f  n(tl,to) i s  known. If an e r ror  i s  observed a t  t 

e f f ec t  a t  a l a t e r  time t can be calculated using o(to,tl). 
i f  t 

equations f o r  R(to,t,) many times f o r  d i f fe ren t  t 

the  0' 

B u t  1 

i s  fixed and t 
1 0 

var ies  i t  i s  obviously inconvenient to solve the 

and it i s  b e t t e r  0' 

t o  put 

h 

and solve the corresponding equations w i t h  the  i n i t i a l  conditions 

applied a t  t We notice, incidentally,  that ~ - l ( t , , t o )  = O(t  t ) 

Furthermore, i t  i s  possible t o  avoid the  inversion of the  matrix; 
1' 0' 1 - 

f o r  l e t  

Different ia t ing w i t h  respect t o  t, and using (4), we find 

;r' = -TA. 
Equation (8) i s  called the  "adjoint equation" of ( 4 ) .  

ad jo in t  equations i n  t h i s  sor t  of context w a s  first cul t ivated i n  

(The use of the  
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b a l l i s t i c s ,  and i s  described i n  "Mathematics for Exterior Ba l l i s t i c s "  

by G.A. Bl iss ,  Wiley, 1944.) 

Now suppose t h a t  equations ( 4 )  and (8) have both been solved, 

the i n i t i a l  conditions making each matrix equal t o  the  iden t i ty  matrix 

a t  time t Writing (6 )  as 1' 

we see tha t  the matrizant re la t ing  any two times can be found. - 

Normally X w i l l  have s i x  components, of posit ion - 

- r = [i] = [~i , and velocity - r '  = 
4 Y '  =[$j. 
-z '1 

Let the matrizant i n  ( 5 )  be subdivided i n t o  four three-by-three matrices: 

(9)  

6% i s  observed a t  t Suppose that an e r ro r  

a f t e r  a thrus t  has been applied there  w i l l  be a ve loc i ty  res idua l  

6% such t h a t & -  a t  time t i s  zero. Then we have 

and it i s  required that 0' 

- 

555 = -v-l-qjrr. 

Consider motion subject t o  a force function R .  The d i f f e r e n t i a l  

1 4 4  
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A =  

6.  

- 

0 1 0  1°1 0 0 0 

0 0 0 

0 0 0 0 0 1  

d2R/aX: d 2 R B X l a X 2  a 2 R D X ? X 3  0 0 0 

a2R/aX?X2 a 2 R / S  2 * a2R/dX$X3 0 0 0 

d2R/aX?X, d2RDX-$X2 d2R/JX3,  0 0 0 
- - 

equations of motion a r e  

The f i r s t  va r i a t iona l  equations can be wr i t t en  as 

Then subs t i tu t ing  from (9 )  and (11) i n t o  the  equation R' = An, w e  f ind  

U '  = w, V '  = Y, W' = BU, Y' = BV, 

from which 

(12)  Ut' = BU and VI' = BV. 

Equations (12) a r e  t o  be solved subject t o  the  i n i t i a l  conditions 

U ( t O ' t O )  = I, V ( t  , t  ) = 0; 

V ' ( t  , t  ) = I. U ' ( t  ,t ) = 0, 0 0  0 0  O 0  1 
1 4 5  
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The columns of U and V a r e  s ix  l i nea r ly  independent solutions of 

the  equation 

which i s  the  f i r s t  var ia t iona l  equation of t he  equation of motion i n  

t he  form r" = gram. - 

Let6r+ and6$ be the i n i t i a l  increments i n  posit ion and veloci ty  

t o  be applied t o  the  reference o rb i t  a t  time t Then a t  time t 0' 

b r  - i s  a solution of (14), and since the components o f 6 5  a n d 6 G  

can be considered a s  s ix  independent, a rb i t r a ry  constants, i t  i s  c l ea r  

t h a t  (15) i s  the  general solution of (14). 

The matrizant and i t s  components should always be considered as 

functions of two variables ( t w o  independent t imes).  Now consider 

We have 
t 

az/at = I +it 0 -  (av(r,t)/at] d 7  

and 

= BZ. 



Matrix Methods. a .  

So Z s a t i s f i e s  t h e  d i f f e r e n t i a l  equation as  w e l l  as t h e  i n i t i a l  con- 

d i t i o n s  f o r  V, and must therefore  be i d e n t i c a l  with V. Hence 

So t h e  matrizant (9)  can be w r i t t e n  

Then from (8) and (11) w e  f i n d  

Now B i s  symmetrical, so  t h a t  transposing equations (18), w e  f i n d  
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Comparing (18~) and (19) with (12) and (l3), we see t h a t  

a r e s u l t  t h a t  app l i e s  only t o  su i t ab le  equations a r i s i n g  from motion 

i n  t h e  conservat ive f i e l d  of force .  

The components of a matr izant  would normally have t o  be found 

numerically;  but  i n  some cases  it i s  poss ib l e  t o  f i n d  them a n a l y t i c a l l y .  

This  i s  notably so i n  t h e  case of Keplerian motion, f o r  which t h e  

cumponents of V are given i n  a paper i n  A . J .  67, June, 1962. 

m t r i z a n t  has poss ib l e  appl ica t ions  i n  pe r tu rba t ion  problems i n  

c e l e s t i a l m e c h a n i c s .  

so lv ing  t h e  d i f f e r e n t i a l  equation, bu t  by consider ing,  from f i r s t  

p r i n c i p l e s ,  w h a t  t h e  e f f e c t s  of e r r o r s  i n  v e l o c i t y  a t  t i m e  to w i l l  

be on e r r o r s  i n  p o s i t i o n  a t  time t .  

This  

The components a r e  most e a s i l y  found, no t  by 

Consider the equation 

6 11' = + s ( t > ,  

i n  which a "forcing funct ion",  g ( t ) ,  has been added t o  ( 2 ) .  

equat ion i s  no longer homogeneous, and one way t o  solve it i s  t o  t a k e  

t h e  so lu t ion  of t h e  homogeneous part, viz .  

The - 

1 4 1  
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and allow t he  a r b i t r a r y  c o n s t a n t s , 6 ~  t o  vary. Then 
-Q7 

S u b s t i t u t i n g  t h i s ,  and ( 5 ) ,  i n t o  (21)  , we have 

so t h a t  

The complete and general  solution i s  there- I ore  

10. 

where&, i s  once again constant. 

subjec t  t o  the  i n i t i a l  conditionsOX(tO) = 6 X  * no conditions about 

orders  of magnitude are imposed. The first term, which includes t h e  

a r b i t r a r y  constants,  i s  t h e  complementary function, and t h e  second i s  

t h e  p a r t i c u l a r  i n t e g r a l .  If the p a r t i c u l a r  i n t e g r a l  i s  t o  be found 

numerically, probably t h e  b e s t  procedure i s  t o  solve equations (21) 

subjec t  t o  t h e  i n i t i a l  cond i t ionsbX( t  ) = 0. 

by t h e  use of t h e  mul t ip l ica t ion  formula (6 )  t o  give 

Tnis i s  t h e  exact so lu t ion  of (21), 
f- 

-0' - 

(23) can be s impl i f ied  - 0  
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Matrix Methods. 11. 

where s i s  an a r b i t r a r y  t i m e ,  chosen t o  make R a s  simple as possible.  

If t h e  equations of motion a r e  i n  Cartesian coordinates, then 

t h e  f i r s t  three  components of g are zero; wr i t ing  t h e  last three  as 

f ,  w e  have, from (24) 

- 

- 

In  t h e  case of disturbed Keplerian motion, s would ce r t a in ly  be a 

t i m e  of per ihel ion passage. Also i n  t h i s  case there  are advantages 

i n  changing the  independent variable from the  time t o  t h e  eccentr ic  

anomaly i n  the  reference o rb i t .  
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